Abstract:Physical adversarial examples (PAEs) are regarded as "whistle-blowers" of real-world risks in deep-learning applications. However, current PAE generation studies show limited adaptive attacking ability to diverse and varying scenes. The key challenges in generating dynamic PAEs are exploring their patterns under noisy gradient feedback and adapting the attack to agnostic scenario natures. To address the problems, we present DynamicPAE, the first generative framework that enables scene-aware real-time physical attacks beyond static attacks. Specifically, to train the dynamic PAE generator under noisy gradient feedback, we introduce the residual-driven sample trajectory guidance technique, which redefines the training task to break the limited feedback information restriction that leads to the degeneracy problem. Intuitively, it allows the gradient feedback to be passed to the generator through a low-noise auxiliary task, thereby guiding the optimization away from degenerate solutions and facilitating a more comprehensive and stable exploration of feasible PAEs. To adapt the generator to agnostic scenario natures, we introduce the context-aligned scene expectation simulation process, consisting of the conditional-uncertainty-aligned data module and the skewness-aligned objective re-weighting module. The former enhances robustness in the context of incomplete observation by employing a conditional probabilistic model for domain randomization, while the latter facilitates consistent stealth control across different attack targets by automatically reweighting losses based on the skewness indicator. Extensive digital and physical evaluations demonstrate the superior attack performance of DynamicPAE, attaining a 1.95 $\times$ boost (65.55% average AP drop under attack) on representative object detectors (e.g., Yolo-v8) over state-of-the-art static PAE generating methods.
Abstract:Mastering multiple tasks through exploration and learning in an environment poses a significant challenge in reinforcement learning (RL). Unsupervised RL has been introduced to address this challenge by training policies with intrinsic rewards rather than extrinsic rewards. However, current intrinsic reward designs and unsupervised RL algorithms often overlook the heterogeneous nature of collected samples, thereby diminishing their sample efficiency. To overcome this limitation, in this paper, we propose a reward-free RL algorithm called \alg. The key idea behind our algorithm is an uncertainty-aware intrinsic reward for exploring the environment and an uncertainty-weighted learning process to handle heterogeneous uncertainty in different samples. Theoretically, we show that in order to find an $\epsilon$-optimal policy, GFA-RFE needs to collect $\tilde{O} (H^2 \log N_{\mathcal F} (\epsilon) \mathrm{dim} (\mathcal F) / \epsilon^2 )$ number of episodes, where $\mathcal F$ is the value function class with covering number $N_{\mathcal F} (\epsilon)$ and generalized eluder dimension $\mathrm{dim} (\mathcal F)$. Such a result outperforms all existing reward-free RL algorithms. We further implement and evaluate GFA-RFE across various domains and tasks in the DeepMind Control Suite. Experiment results show that GFA-RFE outperforms or is comparable to the performance of state-of-the-art unsupervised RL algorithms.
Abstract:Real-world multi-agent systems are often dynamic and continuous, where the agents co-evolve and undergo changes in their trajectories and interactions over time. For example, the COVID-19 transmission in the U.S. can be viewed as a multi-agent system, where states act as agents and daily population movements between them are interactions. Estimating the counterfactual outcomes in such systems enables accurate future predictions and effective decision-making, such as formulating COVID-19 policies. However, existing methods fail to model the continuous dynamic effects of treatments on the outcome, especially when multiple treatments (e.g., "stay-at-home" and "get-vaccine" policies) are applied simultaneously. To tackle this challenge, we propose Causal Graph Ordinary Differential Equations (CAG-ODE), a novel model that captures the continuous interaction among agents using a Graph Neural Network (GNN) as the ODE function. The key innovation of our model is to learn time-dependent representations of treatments and incorporate them into the ODE function, enabling precise predictions of potential outcomes. To mitigate confounding bias, we further propose two domain adversarial learning-based objectives, which enable our model to learn balanced continuous representations that are not affected by treatments or interference. Experiments on two datasets (i.e., COVID-19 and tumor growth) demonstrate the superior performance of our proposed model.
Abstract:Diffusion models have emerged as powerful tools for high-quality data generation, such as image generation. Despite its success in continuous spaces, discrete diffusion models, which apply to domains such as texts and natural languages, remain under-studied and often suffer from slow generation speed. In this paper, we propose a novel de-randomized diffusion process, which leads to an accelerated algorithm for discrete diffusion models. Our technique significantly reduces the number of function evaluations (i.e., calls to the neural network), making the sampling process much faster. Furthermore, we introduce a continuous-time (i.e., infinite-step) sampling algorithm that can provide even better sample qualities than its discrete-time (finite-step) counterpart. Extensive experiments on natural language generation and machine translation tasks demonstrate the superior performance of our method in terms of both generation speed and sample quality over existing methods for discrete diffusion models.
Abstract:In the current landscape of large models, the Transformer stands as a cornerstone, playing a pivotal role in shaping the trajectory of modern models. However, its application encounters challenges attributed to the substantial computational intricacies intrinsic to its attention mechanism. Moreover, its reliance on high-precision floating-point operations presents specific hurdles, particularly evident in computation-intensive scenarios such as edge computing environments. These environments, characterized by resource-constrained devices and a preference for lower precision, necessitate innovative solutions. To tackle the exacting data processing demands posed by edge devices, we introduce the Bitformer model, an inventive extension of the Transformer paradigm. Central to this innovation is a novel attention mechanism that adeptly replaces conventional floating-point matrix multiplication with bitwise operations. This strategic substitution yields dual advantages. Not only does it maintain the attention mechanism's prowess in capturing intricate long-range information dependencies, but it also orchestrates a profound reduction in the computational complexity inherent in the attention operation. The transition from an $O(n^2d)$ complexity, typical of floating-point operations, to an $O(n^2T)$ complexity characterizing bitwise operations, substantiates this advantage. Notably, in this context, the parameter $T$ remains markedly smaller than the conventional dimensionality parameter $d$. The Bitformer model in essence endeavors to reconcile the indomitable requirements of modern computing landscapes with the constraints posed by edge computing scenarios. By forging this innovative path, we bridge the gap between high-performing models and resource-scarce environments, thus unveiling a promising trajectory for further advancements in the field.
Abstract:The challenge of overfitting, in which the model memorizes the training data and fails to generalize to test data, has become increasingly significant in the training of large neural networks. To tackle this challenge, Sharpness-Aware Minimization (SAM) has emerged as a promising training method, which can improve the generalization of neural networks even in the presence of label noise. However, a deep understanding of how SAM works, especially in the setting of nonlinear neural networks and classification tasks, remains largely missing. This paper fills this gap by demonstrating why SAM generalizes better than Stochastic Gradient Descent (SGD) for a certain data model and two-layer convolutional ReLU networks. The loss landscape of our studied problem is nonsmooth, thus current explanations for the success of SAM based on the Hessian information are insufficient. Our result explains the benefits of SAM, particularly its ability to prevent noise learning in the early stages, thereby facilitating more effective learning of features. Experiments on both synthetic and real data corroborate our theory.
Abstract:This paper analyzes the performance of the 3rd Generation Partnership Project (3GPP)-inspired multi-cell wideband single-hop backhaul millimeter-wave-in-band-full-duplex (IBFD)-integrated access and backhaul (IAB) networks by using stochastic geometry. We model the wired-connected Next Generation NodeBs (gNBs) as the Mat\'ern hard-core point process (MHCPP) to meet the real-world deployment requirement and reduce the cost caused by wired connection in the network. We first derive association probabilities that reflect how likely the typical user-equipment is served by a gNB or an IAB-node based on the maximum long-term averaged biased-received-desired-signal power criteria. Further, by leveraging the composite Gamma-Lognormal distribution, we derive the closed-form signal to interference plus noise ratio coverage, capacity with outage, and ergodic capacity of the network. In order to avoid underestimating the noise, we consider the sidelobe gain on inter-cell interference links and the analog to digital converter quantization noise. Compared with the half-duplex transmission, numerical results show an enhanced capacity with outage and ergodic capacity provided by IBFD under successful self-interference cancellation. We also study how the power bias and density ratio of the IAB-node to gNB, and the hard-core distance can affect system performances.
Abstract:We study reward-free reinforcement learning (RL) with linear function approximation, where the agent works in two phases: (1) in the exploration phase, the agent interacts with the environment but cannot access the reward; and (2) in the planning phase, the agent is given a reward function and is expected to find a near-optimal policy based on samples collected in the exploration phase. The sample complexities of existing reward-free algorithms have a polynomial dependence on the planning horizon, which makes them intractable for long planning horizon RL problems. In this paper, we propose a new reward-free algorithm for learning linear mixture Markov decision processes (MDPs), where the transition probability can be parameterized as a linear combination of known feature mappings. At the core of our algorithm is uncertainty-weighted value-targeted regression with exploration-driven pseudo-reward and a high-order moment estimator for the aleatoric and epistemic uncertainties. When the total reward is bounded by $1$, we show that our algorithm only needs to explore $\tilde O( d^2\varepsilon^{-2})$ episodes to find an $\varepsilon$-optimal policy, where $d$ is the dimension of the feature mapping. The sample complexity of our algorithm only has a polylogarithmic dependence on the planning horizon and therefore is ``horizon-free''. In addition, we provide an $\Omega(d^2\varepsilon^{-2})$ sample complexity lower bound, which matches the sample complexity of our algorithm up to logarithmic factors, suggesting that our algorithm is optimal.