Abstract:Variance-dependent regret bounds for linear contextual bandits, which improve upon the classical $\tilde{O}(d\sqrt{K})$ regret bound to $\tilde{O}(d\sqrt{\sum_{k=1}^K\sigma_k^2})$, where $d$ is the context dimension, $K$ is the number of rounds, and $\sigma^2_k$ is the noise variance in round $k$, has been widely studied in recent years. However, most existing works focus on the regret upper bounds instead of lower bounds. To our knowledge, the only lower bound is from Jia et al. (2024), which proved that for any eluder dimension $d_{\textbf{elu}}$ and total variance budget $\Lambda$, there exists an instance with $\sum_{k=1}^K\sigma_k^2\leq \Lambda$ for which any algorithm incurs a variance-dependent lower bound of $\Omega(\sqrt{d_{\textbf{elu}}\Lambda})$. However, this lower bound has a $\sqrt{d}$ gap with existing upper bounds. Moreover, it only considers a fixed total variance budget $\Lambda$ and does not apply to a general variance sequence $\{\sigma_1^2,\ldots,\sigma_K^2\}$. In this paper, to overcome the limitations of Jia et al. (2024), we consider the general variance sequence under two settings. For a prefixed sequence, where the entire variance sequence is revealed to the learner at the beginning of the learning process, we establish a variance-dependent lower bound of $\Omega(d \sqrt{\sum_{k=1}^K\sigma_k^2 }/\log K)$ for linear contextual bandits. For an adaptive sequence, where an adversary can generate the variance $\sigma_k^2$ in each round $k$ based on historical observations, we show that when the adversary must generate $\sigma_k^2$ before observing the decision set $\mathcal{D}_k$, a similar lower bound of $\Omega(d\sqrt{ \sum_{k=1}^K\sigma_k^2} /\log^6(dK))$ holds. In both settings, our results match the upper bounds of the SAVE algorithm (Zhao et al., 2023) up to logarithmic factors.
Abstract:Despite deep neural networks' powerful representation learning capabilities, theoretical understanding of how networks can simultaneously achieve meaningful feature learning and global convergence remains elusive. Existing approaches like the neural tangent kernel (NTK) are limited because features stay close to their initialization in this parametrization, leaving open questions about feature properties during substantial evolution. In this paper, we investigate the training dynamics of infinitely wide, $L$-layer neural networks using the tensor program (TP) framework. Specifically, we show that, when trained with stochastic gradient descent (SGD) under the Maximal Update parametrization ($\mu$P) and mild conditions on the activation function, SGD enables these networks to learn linearly independent features that substantially deviate from their initial values. This rich feature space captures relevant data information and ensures that any convergent point of the training process is a global minimum. Our analysis leverages both the interactions among features across layers and the properties of Gaussian random variables, providing new insights into deep representation learning. We further validate our theoretical findings through experiments on real-world datasets.
Abstract:This paper investigates energy guidance in generative modeling, where the target distribution is defined as $q(\mathbf x) \propto p(\mathbf x)\exp(-\beta \mathcal E(\mathbf x))$, with $p(\mathbf x)$ being the data distribution and $\mathcal E(\mathcal x)$ as the energy function. To comply with energy guidance, existing methods often require auxiliary procedures to learn intermediate guidance during the diffusion process. To overcome this limitation, we explore energy-guided flow matching, a generalized form of the diffusion process. We introduce energy-weighted flow matching (EFM), a method that directly learns the energy-guided flow without the need for auxiliary models. Theoretical analysis shows that energy-weighted flow matching accurately captures the guided flow. Additionally, we extend this methodology to energy-weighted diffusion models and apply it to offline reinforcement learning (RL) by proposing the Q-weighted Iterative Policy Optimization (QIPO). Empirically, we demonstrate that the proposed QIPO algorithm improves performance in offline RL tasks. Notably, our algorithm is the first energy-guided diffusion model that operates independently of auxiliary models and the first exact energy-guided flow matching model in the literature.
Abstract:Exponential moving average (EMA) has recently gained significant popularity in training modern deep learning models, especially diffusion-based generative models. However, there have been few theoretical results explaining the effectiveness of EMA. In this paper, to better understand EMA, we establish the risk bound of online SGD with EMA for high-dimensional linear regression, one of the simplest overparameterized learning tasks that shares similarities with neural networks. Our results indicate that (i) the variance error of SGD with EMA is always smaller than that of SGD without averaging, and (ii) unlike SGD with iterate averaging from the beginning, the bias error of SGD with EMA decays exponentially in every eigen-subspace of the data covariance matrix. Additionally, we develop proof techniques applicable to the analysis of a broad class of averaging schemes.
Abstract:Reinforcement Learning from Human Feedback (RLHF) has been highly successful in aligning large language models with human preferences. While prevalent methods like DPO have demonstrated strong performance, they frame interactions with the language model as a bandit problem, which limits their applicability in real-world scenarios where multi-turn conversations are common. Additionally, DPO relies on the Bradley-Terry model assumption, which does not adequately capture the non-transitive nature of human preferences. In this paper, we address these challenges by modeling the alignment problem as a two-player constant-sum Markov game, where each player seeks to maximize their winning rate against the other across all steps of the conversation. Our approach Multi-step Preference Optimization (MPO) is built upon the natural actor-critic framework~\citep{peters2008natural}. We further develop OMPO based on the optimistic online gradient descent algorithm~\citep{rakhlin2013online,joulani17a}. Theoretically, we provide a rigorous analysis for both algorithms on convergence and show that OMPO requires $\mathcal{O}(\epsilon^{-1})$ policy updates to converge to an $\epsilon$-approximate Nash equilibrium. We also validate the effectiveness of our method on multi-turn conversations dataset and math reasoning dataset.
Abstract:Recent advances in Reinforcement Learning from Human Feedback (RLHF) have shown that KL-regularization plays a pivotal role in improving the efficiency of RL fine-tuning for large language models (LLMs). Despite its empirical advantage, the theoretical difference between KL-regularized RL and standard RL remains largely under-explored. While there is a recent line of work on the theoretical analysis of KL-regularized objective in decision making \citep{xiong2024iterative, xie2024exploratory,zhao2024sharp}, these analyses either reduce to the traditional RL setting or rely on strong coverage assumptions. In this paper, we propose an optimism-based KL-regularized online contextual bandit algorithm, and provide a novel analysis of its regret. By carefully leveraging the benign optimization landscape induced by the KL-regularization and the optimistic reward estimation, our algorithm achieves an $\mathcal{O}\big(\eta\log (N_{\mathcal R} T)\cdot d_{\mathcal R}\big)$ logarithmic regret bound, where $\eta, N_{\mathcal R},T,d_{\mathcal R}$ denote the KL-regularization parameter, the cardinality of the reward function class, number of rounds, and the complexity of the reward function class. Furthermore, we extend our algorithm and analysis to reinforcement learning by developing a novel decomposition over transition steps and also obtain a similar logarithmic regret bound.
Abstract:KL-regularized policy optimization has become a workhorse in learning-based decision making, while its theoretical understanding is still very limited. Although recent progress has been made towards settling the sample complexity of KL-regularized contextual bandits, existing sample complexity bounds are either $\tilde{O}(\epsilon^{-2})$ under single-policy concentrability or $\tilde{O}(\epsilon^{-1})$ under all-policy concentrability. In this paper, we propose the \emph{first} algorithm with $\tilde{O}(\epsilon^{-1})$ sample complexity under single-policy concentrability for offline contextual bandits. Our algorithm is designed for general function approximation and based on the principle of \emph{pessimism in the face of uncertainty}. The core of our proof leverages the strong convexity of the KL regularization, and the conditional non-negativity of the gap between the true reward and its pessimistic estimator to refine a mean-value-type risk upper bound to its extreme. This in turn leads to a novel covariance-based analysis, effectively bypassing the need for uniform control over the discrepancy between any two functions in the function class. The near-optimality of our algorithm is demonstrated by an $\tilde{\Omega}(\epsilon^{-1})$ lower bound. Furthermore, we extend our algorithm to contextual dueling bandits and achieve a similar nearly optimal sample complexity.
Abstract:Scaling language models to handle longer input sequences typically necessitates large key-value (KV) caches, resulting in substantial memory overhead during inference. In this paper, we propose Tensor Product Attention (TPA), a novel attention mechanism that uses tensor decompositions to represent queries, keys, and values compactly, significantly shrinking KV cache size at inference time. By factorizing these representations into contextual low-rank components (contextual factorization) and seamlessly integrating with RoPE, TPA achieves improved model quality alongside memory efficiency. Based on TPA, we introduce the Tensor ProducT ATTenTion Transformer (T6), a new model architecture for sequence modeling. Through extensive empirical evaluation of language modeling tasks, we demonstrate that T6 exceeds the performance of standard Transformer baselines including MHA, MQA, GQA, and MLA across various metrics, including perplexity and a range of renowned evaluation benchmarks. Notably, TPAs memory efficiency enables the processing of significantly longer sequences under fixed resource constraints, addressing a critical scalability challenge in modern language models. The code is available at https://github.com/tensorgi/T6.
Abstract:Optimization algorithms such as AdaGrad and Adam have significantly advanced the training of deep models by dynamically adjusting the learning rate during the optimization process. However, adhoc tuning of learning rates poses a challenge, leading to inefficiencies in practice. To address this issue, recent research has focused on developing "learning-rate-free" or "parameter-free" algorithms that operate effectively without the need for learning rate tuning. Despite these efforts, existing parameter-free variants of AdaGrad and Adam tend to be overly complex and/or lack formal convergence guarantees. In this paper, we present AdaGrad++ and Adam++, novel and simple parameter-free variants of AdaGrad and Adam with convergence guarantees. We prove that AdaGrad++ achieves comparable convergence rates to AdaGrad in convex optimization without predefined learning rate assumptions. Similarly, Adam++ matches the convergence rate of Adam without relying on any conditions on the learning rates. Experimental results across various deep learning tasks validate the competitive performance of AdaGrad++ and Adam++.
Abstract:Training deep neural networks--and more recently, large models--demands efficient and scalable optimizers. Adaptive gradient algorithms like Adam, AdamW, and their variants have been central to this task. Despite the development of numerous variance reduction algorithms in the past decade aimed at accelerating stochastic optimization in both convex and nonconvex settings, variance reduction has not found widespread success in training deep neural networks or large language models. Consequently, it has remained a less favored approach in modern AI. In this paper, to unleash the power of variance reduction for efficient training of large models, we propose a unified optimization framework, MARS (Make vAriance Reduction Shine), which reconciles preconditioned gradient methods with variance reduction via a scaled stochastic recursive momentum technique. Within our framework, we introduce three instances of MARS that leverage preconditioned gradient updates based on AdamW, Lion, and Shampoo, respectively. We also draw a connection between our algorithms and existing optimizers. Experimental results on training GPT-2 models indicate that MARS consistently outperforms AdamW by a large margin.