Abstract:Leveraging the effective visual-text alignment and static generalizability from CLIP, recent video learners adopt CLIP initialization with further regularization or recombination for generalization in open-vocabulary action recognition in-context. However, due to the static bias of CLIP, such video learners tend to overfit on shortcut static features, thereby compromising their generalizability, especially to novel out-of-context actions. To address this issue, we introduce Open-MeDe, a novel Meta-optimization framework with static Debiasing for Open-vocabulary action recognition. From a fresh perspective of generalization, Open-MeDe adopts a meta-learning approach to improve known-to-open generalizing and image-to-video debiasing in a cost-effective manner. Specifically, Open-MeDe introduces a cross-batch meta-optimization scheme that explicitly encourages video learners to quickly generalize to arbitrary subsequent data via virtual evaluation, steering a smoother optimization landscape. In effect, the free of CLIP regularization during optimization implicitly mitigates the inherent static bias of the video meta-learner. We further apply self-ensemble over the optimization trajectory to obtain generic optimal parameters that can achieve robust generalization to both in-context and out-of-context novel data. Extensive evaluations show that Open-MeDe not only surpasses state-of-the-art regularization methods tailored for in-context open-vocabulary action recognition but also substantially excels in out-of-context scenarios.
Abstract:Chain-of-Thought (CoT) significantly enhances the performance of large language models (LLMs) across a wide range of tasks, and prior research shows that CoT can theoretically increase expressiveness. However, there is limited mechanistic understanding of the algorithms that Transformer+CoT can learn. In this work, we (1) evaluate the state tracking capabilities of Transformer+CoT and its variants, confirming the effectiveness of CoT. (2) Next, we identify the circuit, a subset of model components, responsible for tracking the world state, finding that late-layer MLP neurons play a key role. We propose two metrics, compression and distinction, and show that the neuron sets for each state achieve nearly 100% accuracy, providing evidence of an implicit finite state automaton (FSA) embedded within the model. (3) Additionally, we explore three realistic settings: skipping intermediate steps, introducing data noise, and testing length generalization. Our results demonstrate that Transformer+CoT learns robust algorithms (FSA), highlighting its resilience in challenging scenarios.
Abstract:Automating planning with LLMs presents transformative opportunities for traditional industries, yet remains underexplored. In commercial construction, the complexity of automated scheduling often requires manual intervention to ensure precision. We propose CONSTRUCTA, a novel framework leveraging LLMs to optimize construction schedules in complex projects like semiconductor fabrication. CONSTRUCTA addresses key challenges by: (1) integrating construction-specific knowledge through static RAG; (2) employing context-sampling techniques inspired by architectural expertise to provide relevant input; and (3) deploying Construction DPO to align schedules with expert preferences using RLHF. Experiments on proprietary data demonstrate performance improvements of +42.3% in missing value prediction, +79.1% in dependency analysis, and +28.9% in automated planning compared to baseline methods, showcasing its potential to revolutionize construction workflows and inspire domain-specific LLM advancements.
Abstract:Optimizing software performance through automated code refinement offers a promising avenue for enhancing execution speed and efficiency. Despite recent advancements in LLMs, a significant gap remains in their ability to perform in-depth program analysis. This study introduces AUTOPATCH, an in-context learning approach designed to bridge this gap by enabling LLMs to automatically generate optimized code. Inspired by how programmers learn and apply knowledge to optimize software, AUTOPATCH incorporates three key components: (1) an analogy-driven framework to align LLM optimization with human cognitive processes, (2) a unified approach that integrates historical code examples and CFG analysis for context-aware learning, and (3) an automated pipeline for generating optimized code through in-context prompting. Experimental results demonstrate that AUTOPATCH achieves a 7.3% improvement in execution efficiency over GPT-4o across common generated executable code, highlighting its potential to advance automated program runtime optimization.
Abstract:Given a partially observed road network, how can we predict the traffic state of unobserved locations? While deep learning approaches show exceptional performance in traffic prediction, most assume sensors at all locations of interest, which is impractical due to financial constraints. Furthermore, these methods typically require costly retraining when sensor configurations change. We propose MoGERNN, an inductive spatio-temporal graph representation model, to address these challenges. Inspired by the Mixture of Experts approach in Large Language Models, we introduce a Mixture of Graph Expert (MoGE) block to model complex spatial dependencies through multiple graph message aggregators and a sparse gating network. This block estimates initial states for unobserved locations, which are then processed by a GRU-based Encoder-Decoder that integrates a graph message aggregator to capture spatio-temporal dependencies and predict future states. Experiments on two real-world datasets show MoGERNN consistently outperforms baseline methods for both observed and unobserved locations. MoGERNN can accurately predict congestion evolution even in areas without sensors, offering valuable information for traffic management. Moreover, MoGERNN is adaptable to dynamic sensing networks, maintaining competitive performance even compared to its retrained counterpart. Tests with different numbers of available sensors confirm its consistent superiority, and ablation studies validate the effectiveness of its key modules.
Abstract:Scaling language models to handle longer input sequences typically necessitates large key-value (KV) caches, resulting in substantial memory overhead during inference. In this paper, we propose Tensor Product Attention (TPA), a novel attention mechanism that uses tensor decompositions to represent queries, keys, and values compactly, significantly shrinking KV cache size at inference time. By factorizing these representations into contextual low-rank components (contextual factorization) and seamlessly integrating with RoPE, TPA achieves improved model quality alongside memory efficiency. Based on TPA, we introduce the Tensor ProducT ATTenTion Transformer (T6), a new model architecture for sequence modeling. Through extensive empirical evaluation of language modeling tasks, we demonstrate that T6 exceeds the performance of standard Transformer baselines including MHA, MQA, GQA, and MLA across various metrics, including perplexity and a range of renowned evaluation benchmarks. Notably, TPAs memory efficiency enables the processing of significantly longer sequences under fixed resource constraints, addressing a critical scalability challenge in modern language models. The code is available at https://github.com/tensorgi/T6.
Abstract:Micro-expression recognition (MER) presents a significant challenge due to the transient and subtle nature of the motion changes involved. In recent years, deep learning methods based on attention mechanisms have made some breakthroughs in MER. However, these methods still suffer from the limitations of insufficient feature capture and poor dynamic adaptation when coping with the instantaneous subtle movement changes of micro-expressions. Therefore, in this paper, we design an Adaptive Hierarchical Multi-Scale Attention Network (AHMSA-Net) for MER. Specifically, we first utilize the onset and apex frames of the micro-expression sequence to extract three-dimensional (3D) optical flow maps, including horizontal optical flow, vertical optical flow, and optical flow strain. Subsequently, the optical flow feature maps are inputted into AHMSA-Net, which consists of two parts: an adaptive hierarchical framework and a multi-scale attention mechanism. Based on the adaptive downsampling hierarchical attention framework, AHMSA-Net captures the subtle changes of micro-expressions from different granularities (fine and coarse) by dynamically adjusting the size of the optical flow feature map at each layer. Based on the multi-scale attention mechanism, AHMSA-Net learns micro-expression action information by fusing features from different scales (channel and spatial). These two modules work together to comprehensively improve the accuracy of MER. Additionally, rigorous experiments demonstrate that the proposed method achieves competitive results on major micro-expression databases, with AHMSA-Net achieving recognition accuracy of up to 78.21% on composite databases (SMIC, SAMM, CASMEII) and 77.08% on the CASME^{}3 database.
Abstract:The performance of computer vision models in certain real-world applications (e.g., rare wildlife observation) is limited by the small number of available images. Expanding datasets using pre-trained generative models is an effective way to address this limitation. However, since the automatic generation process is uncontrollable, the generated images are usually limited in diversity, and some of them are undesired. In this paper, we propose a human-guided image generation method for more controllable dataset expansion. We develop a multi-modal projection method with theoretical guarantees to facilitate the exploration of both the original and generated images. Based on the exploration, users refine the prompts and re-generate images for better performance. Since directly refining the prompts is challenging for novice users, we develop a sample-level prompt refinement method to make it easier. With this method, users only need to provide sample-level feedback (e.g., which samples are undesired) to obtain better prompts. The effectiveness of our method is demonstrated through the quantitative evaluation of the multi-modal projection method, improved model performance in the case study for both classification and object detection tasks, and positive feedback from the experts.
Abstract:Promptable segmentation foundation models have emerged as a transformative approach to addressing the diverse needs in medical images, but most existing models require expensive computing, posing a big barrier to their adoption in clinical practice. In this work, we organized the first international competition dedicated to promptable medical image segmentation, featuring a large-scale dataset spanning nine common imaging modalities from over 20 different institutions. The top teams developed lightweight segmentation foundation models and implemented an efficient inference pipeline that substantially reduced computational requirements while maintaining state-of-the-art segmentation accuracy. Moreover, the post-challenge phase advanced the algorithms through the design of performance booster and reproducibility tasks, resulting in improved algorithms and validated reproducibility of the winning solution. Furthermore, the best-performing algorithms have been incorporated into the open-source software with a user-friendly interface to facilitate clinical adoption. The data and code are publicly available to foster the further development of medical image segmentation foundation models and pave the way for impactful real-world applications.
Abstract:Cross-modal contrastive distillation has recently been explored for learning effective 3D representations. However, existing methods focus primarily on modality-shared features, neglecting the modality-specific features during the pre-training process, which leads to suboptimal representations. In this paper, we theoretically analyze the limitations of current contrastive methods for 3D representation learning and propose a new framework, namely CMCR, to address these shortcomings. Our approach improves upon traditional methods by better integrating both modality-shared and modality-specific features. Specifically, we introduce masked image modeling and occupancy estimation tasks to guide the network in learning more comprehensive modality-specific features. Furthermore, we propose a novel multi-modal unified codebook that learns an embedding space shared across different modalities. Besides, we introduce geometry-enhanced masked image modeling to further boost 3D representation learning. Extensive experiments demonstrate that our method mitigates the challenges faced by traditional approaches and consistently outperforms existing image-to-LiDAR contrastive distillation methods in downstream tasks. Code will be available at https://github.com/Eaphan/CMCR.