Abstract:Retrieval-Augmented Generation (RAG) has emerged as a pivotal innovation in natural language processing, enhancing generative models by incorporating external information retrieval. Evaluating RAG systems, however, poses distinct challenges due to their hybrid structure and reliance on dynamic knowledge sources. We consequently enhanced an extensive survey and proposed an analysis framework for benchmarks of RAG systems, RAGR (Retrieval, Generation, Additional Requirement), designed to systematically analyze RAG benchmarks by focusing on measurable outputs and established truths. Specifically, we scrutinize and contrast multiple quantifiable metrics of the Retrieval and Generation component, such as relevance, accuracy, and faithfulness, of the internal links within the current RAG evaluation methods, covering the possible output and ground truth pairs. We also analyze the integration of additional requirements of different works, discuss the limitations of current benchmarks, and propose potential directions for further research to address these shortcomings and advance the field of RAG evaluation. In conclusion, this paper collates the challenges associated with RAG evaluation. It presents a thorough analysis and examination of existing methodologies for RAG benchmark design based on the proposed RGAR framework.
Abstract:Reinforcement Learning from Human Feedback (RLHF) has played a crucial role in the success of large models such as ChatGPT. RLHF is a reinforcement learning framework which combines human feedback to improve learning effectiveness and performance. However, obtaining preferences feedback manually is quite expensive in commercial applications. Some statistical commercial indicators are usually more valuable and always ignored in RLHF. There exists a gap between commercial target and model training. In our research, we will attempt to fill this gap with statistical business feedback instead of human feedback, using AB testing which is a well-established statistical method. Reinforcement Learning from Statistical Feedback (RLSF) based on AB testing is proposed. Statistical inference methods are used to obtain preferences for training the reward network, which fine-tunes the pre-trained model in reinforcement learning framework, achieving greater business value. Furthermore, we extend AB testing with double selections at a single time-point to ANT testing with multiple selections at different feedback time points. Moreover, we design numerical experiences to validate the effectiveness of our algorithm framework.