Victor
Abstract:Recommender systems (RS) have become crucial tools for information filtering in various real world scenarios. And cross domain recommendation (CDR) has been widely explored in recent years in order to provide better recommendation results in the target domain with the help of other domains. The CDR technology has developed rapidly, yet there is a lack of a comprehensive survey summarizing recent works. Therefore, in this paper, we will summarize the progress and prospects based on the main procedure of CDR, including Cross Domain Relevance, Cross Domain Interaction, Cross Domain Representation Enhancement and Model Optimization. To help researchers better understand and engage in this field, we also organize the applications and resources, and highlight several current important challenges and future directions of CDR. More details of the survey articles are available at https://github.com/USTCAGI/Awesome-Cross-Domain Recommendation-Papers-and-Resources.
Abstract:Reinforcement learning-based mapless navigation holds significant potential. However, it faces challenges in indoor environments with local minima area. This paper introduces a safe mapless navigation framework utilizing hierarchical reinforcement learning (HRL) to enhance navigation through such areas. The high-level policy creates a sub-goal to direct the navigation process. Notably, we have developed a sub-goal update mechanism that considers environment congestion, efficiently avoiding the entrapment of the robot in local minimum areas. The low-level motion planning policy, trained through safe reinforcement learning, outputs real-time control instructions based on acquired sub-goal. Specifically, to enhance the robot's environmental perception, we introduce a new obstacle encoding method that evaluates the impact of obstacles on the robot's motion planning. To validate the performance of our HRL-based navigation framework, we conduct simulations in office, home, and restaurant environments. The findings demonstrate that our HRL-based navigation framework excels in both static and dynamic scenarios. Finally, we implement the HRL-based navigation framework on a TurtleBot3 robot for physical validation experiments, which exhibits its strong generalization capabilities.
Abstract:The video visual relation detection (VidVRD) task is to identify objects and their relationships in videos, which is challenging due to the dynamic content, high annotation costs, and long-tailed distribution of relations. Visual language models (VLMs) help explore open-vocabulary visual relation detection tasks, yet often overlook the connections between various visual regions and their relations. Moreover, using VLMs to directly identify visual relations in videos poses significant challenges because of the large disparity between images and videos. Therefore, we propose a novel open-vocabulary VidVRD framework, termed OpenVidVRD, which transfers VLMs' rich knowledge and powerful capabilities to improve VidVRD tasks through prompt learning. Specificall y, We use VLM to extract text representations from automatically generated region captions based on the video's regions. Next, we develop a spatiotemporal refiner module to derive object-level relationship representations in the video by integrating cross-modal spatiotemporal complementary information. Furthermore, a prompt-driven strategy to align semantic spaces is employed to harness the semantic understanding of VLMs, enhancing the overall generalization ability of OpenVidVRD. Extensive experiments conducted on the VidVRD and VidOR public datasets show that the proposed model outperforms existing methods.
Abstract:Existing multimodal UAV object detection methods often overlook the impact of semantic gaps between modalities, which makes it difficult to achieve accurate semantic and spatial alignments, limiting detection performance. To address this problem, we propose a Large Language Model (LLM) guided Progressive feature Alignment Network called LPANet, which leverages the semantic features extracted from a large language model to guide the progressive semantic and spatial alignment between modalities for multimodal UAV object detection. To employ the powerful semantic representation of LLM, we generate the fine-grained text descriptions of each object category by ChatGPT and then extract the semantic features using the large language model MPNet. Based on the semantic features, we guide the semantic and spatial alignments in a progressive manner as follows. First, we design the Semantic Alignment Module (SAM) to pull the semantic features and multimodal visual features of each object closer, alleviating the semantic differences of objects between modalities. Second, we design the Explicit Spatial alignment Module (ESM) by integrating the semantic relations into the estimation of feature-level offsets, alleviating the coarse spatial misalignment between modalities. Finally, we design the Implicit Spatial alignment Module (ISM), which leverages the cross-modal correlations to aggregate key features from neighboring regions to achieve implicit spatial alignment. Comprehensive experiments on two public multimodal UAV object detection datasets demonstrate that our approach outperforms state-of-the-art multimodal UAV object detectors.
Abstract:Knowledge editing is a technique for efficiently and accurately updating the knowledge of large language models (LLMs) to alleviate obsolescence and correct errors. However, most existing methods overfit to specific models, causing edited knowledge to be discarded during each LLM update and requiring frequent re-editing, which is particularly burdensome in today's rapidly evolving open-source community. To address this issue, we propose the problem of cross-model knowledge editing and introduce MindBridge, a scalable solution inspired by the low coupling between modality processing and LLMs in multi-modal models. MindBridge introduces the novel concept of memory modality, which encodes edited knowledge as an independent modality. It first performs LLM-agnostic pre-training of the memory modality and then integrates it with various LLMs. Extensive experiments on multiple LLMs and popular knowledge editing datasets demonstrate that MindBridge achieves superior performance even in editing tens of thousands of knowledge entries and can flexibly adapt to different LLMs. Our code is available at https://github.com/CrashBugger/MindBridge.
Abstract:First-order logic (FOL) can represent the logical entailment semantics of natural language (NL) sentences, but determining natural language entailment using FOL remains a challenge. To address this, we propose the Entailment-Preserving FOL representations (EPF) task and introduce reference-free evaluation metrics for EPF, the Entailment-Preserving Rate (EPR) family. In EPF, one should generate FOL representations from multi-premise natural language entailment data (e.g. EntailmentBank) so that the automatic prover's result preserves the entailment labels. Experiments show that existing methods for NL-to-FOL translation struggle in EPF. To this extent, we propose a training method specialized for the task, iterative learning-to-rank, which directly optimizes the model's EPR score through a novel scoring function and a learning-to-rank objective. Our method achieves a 1.8-2.7% improvement in EPR and a 17.4-20.6% increase in EPR@16 compared to diverse baselines in three datasets. Further analyses reveal that iterative learning-to-rank effectively suppresses the arbitrariness of FOL representation by reducing the diversity of predicate signatures, and maintains strong performance across diverse inference types and out-of-domain data.
Abstract:Point cloud salient object detection has attracted the attention of researchers in recent years. Since existing works do not fully utilize the geometry context of 3D objects, blurry boundaries are generated when segmenting objects with complex backgrounds. In this paper, we propose a geometry-aware 3D salient object detection network that explicitly clusters points into superpoints to enhance the geometric boundaries of objects, thereby segmenting complete objects with clear boundaries. Specifically, we first propose a simple yet effective superpoint partition module to cluster points into superpoints. In order to improve the quality of superpoints, we present a point cloud class-agnostic loss to learn discriminative point features for clustering superpoints from the object. After obtaining superpoints, we then propose a geometry enhancement module that utilizes superpoint-point attention to aggregate geometric information into point features for predicting the salient map of the object with clear boundaries. Extensive experiments show that our method achieves new state-of-the-art performance on the PCSOD dataset.
Abstract:As more and more internet users post images online to express their daily emotions, image sentiment analysis has attracted increasing attention. Recently, researchers generally tend to design different neural networks to extract visual features from images for sentiment analysis. Despite the significant progress, metadata, the data (e.g., text descriptions and keyword tags) for describing the image, has not been sufficiently explored in this task. In this paper, we propose a novel Metadata Enhanced Transformer for sentiment analysis (SentiFormer) to fuse multiple metadata and the corresponding image into a unified framework. Specifically, we first obtain multiple metadata of the image and unify the representations of diverse data. To adaptively learn the appropriate weights for each metadata, we then design an adaptive relevance learning module to highlight more effective information while suppressing weaker ones. Moreover, we further develop a cross-modal fusion module to fuse the adaptively learned representations and make the final prediction. Extensive experiments on three publicly available datasets demonstrate the superiority and rationality of our proposed method.
Abstract:The reasoning abilities are one of the most enigmatic and captivating aspects of large language models (LLMs). Numerous studies are dedicated to exploring and expanding the boundaries of this reasoning capability. However, tasks that embody both reasoning and recall characteristics are often overlooked. In this paper, we introduce such a novel task, code reasoning, to provide a new perspective for the reasoning abilities of LLMs. We summarize three meta-benchmarks based on established forms of logical reasoning, and instantiate these into eight specific benchmark tasks. Our testing on these benchmarks reveals that LLMs continue to struggle with identifying satisfactory reasoning pathways. Additionally, we present a new pathway exploration pipeline inspired by human intricate problem-solving methods. This Reflective Hypothesis Decomposition and Amendment (RHDA) pipeline consists of the following iterative steps: (1) Proposing potential hypotheses based on observations and decomposing them; (2) Utilizing tools to validate hypotheses and reflection outcomes; (3) Revising hypothesis in light of observations. Our approach effectively mitigates logical chain collapses arising from forgetting or hallucination issues in multi-step reasoning, resulting in performance gains of up to $3\times$. Finally, we expanded this pipeline by applying it to simulate complex household tasks in real-world scenarios, specifically in VirtualHome, enhancing the handling of failure cases. We release our code and all of results at https://github.com/TnTWoW/code_reasoning.
Abstract:Chinese Spelling Correction (CSC) is a critical task in natural language processing, aimed at detecting and correcting spelling errors in Chinese text. This survey provides a comprehensive overview of CSC, tracing its evolution from pre-trained language models to large language models, and critically analyzing their respective strengths and weaknesses in this domain. Moreover, we further present a detailed examination of existing benchmark datasets, highlighting their inherent challenges and limitations. Finally, we propose promising future research directions, particularly focusing on leveraging the potential of LLMs and their reasoning capabilities for improved CSC performance. To the best of our knowledge, this is the first comprehensive survey dedicated to the field of CSC. We believe this work will serve as a valuable resource for researchers, fostering a deeper understanding of the field and inspiring future advancements.