Victor
Abstract:Empirical Risk Minimization (ERM) models often rely on spurious correlations between features and labels during the learning process, leading to shortcut learning behavior that undermines robustness generalization performance. Current research mainly targets identifying or mitigating a single shortcut; however, in real-world scenarios, cues within the data are diverse and unknown. In empirical studies, we reveal that the models rely to varying extents on different shortcuts. Compared to weak shortcuts, models depend more heavily on strong shortcuts, resulting in their poor generalization ability. To address these challenges, we propose MiMu, a novel method integrated with Transformer-based ERMs designed to Mitigate Multiple shortcut learning behavior, which incorporates self-calibration strategy and self-improvement strategy. In the source model, we preliminarily propose the self-calibration strategy to prevent the model from relying on shortcuts and make overconfident predictions. Then, we further design self-improvement strategy in target model to reduce the reliance on multiple shortcuts. The random mask strategy involves randomly masking partial attention positions to diversify the focus of target model other than concentrating on a fixed region. Meanwhile, the adaptive attention alignment module facilitates the alignment of attention weights to the calibrated source model, without the need for post-hoc attention maps or supervision. Finally, extensive experiments conducted on Natural Language Processing (NLP) and Computer Vision (CV) demonstrate the effectiveness of MiMu in improving robustness generalization abilities.
Abstract:Recent studies have shown that large language models (LLMs) can assess relevance and support information retrieval (IR) tasks such as document ranking and relevance judgment generation. However, the internal mechanisms by which off-the-shelf LLMs understand and operationalize relevance remain largely unexplored. In this paper, we systematically investigate how different LLM modules contribute to relevance judgment through the lens of mechanistic interpretability. Using activation patching techniques, we analyze the roles of various model components and identify a multi-stage, progressive process in generating either pointwise or pairwise relevance judgment. Specifically, LLMs first extract query and document information in the early layers, then process relevance information according to instructions in the middle layers, and finally utilize specific attention heads in the later layers to generate relevance judgments in the required format. Our findings provide insights into the mechanisms underlying relevance assessment in LLMs, offering valuable implications for future research on leveraging LLMs for IR tasks.
Abstract:Utilizing large language models (LLMs) for document reranking has been a popular and promising research direction in recent years, many studies are dedicated to improving the performance and efficiency of using LLMs for reranking. Besides, it can also be applied in many real-world applications, such as search engines or retrieval-augmented generation. In response to the growing demand for research and application in practice, we introduce a unified framework, \textbf{LLM4Ranking}, which enables users to adopt different ranking methods using open-source or closed-source API-based LLMs. Our framework provides a simple and extensible interface for document reranking with LLMs, as well as easy-to-use evaluation and fine-tuning scripts for this task. We conducted experiments based on this framework and evaluated various models and methods on several widely used datasets, providing reproducibility results on utilizing LLMs for document reranking. Our code is publicly available at https://github.com/liuqi6777/llm4ranking.
Abstract:In multi-agent safety-critical scenarios, traditional autonomous driving frameworks face significant challenges in balancing safety constraints and task performance. These frameworks struggle to quantify dynamic interaction risks in real-time and depend heavily on manual rules, resulting in low computational efficiency and conservative strategies. To address these limitations, we propose a Dynamic Residual Safe Reinforcement Learning (DRS-RL) framework grounded in a safety-enhanced networked Markov decision process. It's the first time that the weak-to-strong theory is introduced into multi-agent decision-making, enabling lightweight dynamic calibration of safety boundaries via a weak-to-strong safety correction paradigm. Based on the multi-agent dynamic conflict zone model, our framework accurately captures spatiotemporal coupling risks among heterogeneous traffic participants and surpasses the static constraints of conventional geometric rules. Moreover, a risk-aware prioritized experience replay mechanism mitigates data distribution bias by mapping risk to sampling probability. Experimental results reveal that the proposed method significantly outperforms traditional RL algorithms in safety, efficiency, and comfort. Specifically, it reduces the collision rate by up to 92.17%, while the safety model accounts for merely 27% of the main model's parameters.
Abstract:The task of issue resolving is to modify a codebase to generate a patch that addresses a given issue. However, existing benchmarks, such as SWE-bench, focus almost exclusively on Python, making them insufficient for evaluating Large Language Models (LLMs) across diverse software ecosystems. To address this, we introduce a multilingual issue-resolving benchmark, called Multi-SWE-bench, covering Java, TypeScript, JavaScript, Go, Rust, C, and C++. It includes a total of 1,632 high-quality instances, which were carefully annotated from 2,456 candidates by 68 expert annotators, ensuring that the benchmark can provide an accurate and reliable evaluation. Based on Multi-SWE-bench, we evaluate a series of state-of-the-art models using three representative methods (Agentless, SWE-agent, and OpenHands) and present a comprehensive analysis with key empirical insights. In addition, we launch a Multi-SWE-RL open-source community, aimed at building large-scale reinforcement learning (RL) training datasets for issue-resolving tasks. As an initial contribution, we release a set of 4,723 well-structured instances spanning seven programming languages, laying a solid foundation for RL research in this domain. More importantly, we open-source our entire data production pipeline, along with detailed tutorials, encouraging the open-source community to continuously contribute and expand the dataset. We envision our Multi-SWE-bench and the ever-growing Multi-SWE-RL community as catalysts for advancing RL toward its full potential, bringing us one step closer to the dawn of AGI.
Abstract:Text-to-video (T2V) generation has made tremendous progress in generating complicated scenes based on texts. However, human-object interaction (HOI) often cannot be precisely generated by current T2V models due to the lack of large-scale videos with accurate captions for HOI. To address this issue, we introduce HOIGen-1M, the first largescale dataset for HOI Generation, consisting of over one million high-quality videos collected from diverse sources. In particular, to guarantee the high quality of videos, we first design an efficient framework to automatically curate HOI videos using the powerful multimodal large language models (MLLMs), and then the videos are further cleaned by human annotators. Moreover, to obtain accurate textual captions for HOI videos, we design a novel video description method based on a Mixture-of-Multimodal-Experts (MoME) strategy that not only generates expressive captions but also eliminates the hallucination by individual MLLM. Furthermore, due to the lack of an evaluation framework for generated HOI videos, we propose two new metrics to assess the quality of generated videos in a coarse-to-fine manner. Extensive experiments reveal that current T2V models struggle to generate high-quality HOI videos and confirm that our HOIGen-1M dataset is instrumental for improving HOI video generation. Project webpage is available at https://liuqi-creat.github.io/HOIGen.github.io.
Abstract:Knowledge Graph Completion (KGC) aims to infer missing information in Knowledge Graphs (KGs) to address their inherent incompleteness. Traditional structure-based KGC methods, while effective, face significant computational demands and scalability challenges due to the need for dense embedding learning and scoring all entities in the KG for each prediction. Recent text-based approaches using language models like T5 and BERT have mitigated these issues by converting KG triples into text for reasoning. However, they often fail to fully utilize contextual information, focusing mainly on the neighborhood of the entity and neglecting the context of the relation. To address this issue, we propose KGC-ERC, a framework that integrates both types of context to enrich the input of generative language models and enhance their reasoning capabilities. Additionally, we introduce a sampling strategy to effectively select relevant context within input token constraints, which optimizes the utilization of contextual information and potentially improves model performance. Experiments on the Wikidata5M, Wiki27K, and FB15K-237-N datasets show that KGC-ERC outperforms or matches state-of-the-art baselines in predictive performance and scalability.
Abstract:Recommender systems (RS) have become crucial tools for information filtering in various real world scenarios. And cross domain recommendation (CDR) has been widely explored in recent years in order to provide better recommendation results in the target domain with the help of other domains. The CDR technology has developed rapidly, yet there is a lack of a comprehensive survey summarizing recent works. Therefore, in this paper, we will summarize the progress and prospects based on the main procedure of CDR, including Cross Domain Relevance, Cross Domain Interaction, Cross Domain Representation Enhancement and Model Optimization. To help researchers better understand and engage in this field, we also organize the applications and resources, and highlight several current important challenges and future directions of CDR. More details of the survey articles are available at https://github.com/USTCAGI/Awesome-Cross-Domain Recommendation-Papers-and-Resources.
Abstract:Reinforcement learning-based mapless navigation holds significant potential. However, it faces challenges in indoor environments with local minima area. This paper introduces a safe mapless navigation framework utilizing hierarchical reinforcement learning (HRL) to enhance navigation through such areas. The high-level policy creates a sub-goal to direct the navigation process. Notably, we have developed a sub-goal update mechanism that considers environment congestion, efficiently avoiding the entrapment of the robot in local minimum areas. The low-level motion planning policy, trained through safe reinforcement learning, outputs real-time control instructions based on acquired sub-goal. Specifically, to enhance the robot's environmental perception, we introduce a new obstacle encoding method that evaluates the impact of obstacles on the robot's motion planning. To validate the performance of our HRL-based navigation framework, we conduct simulations in office, home, and restaurant environments. The findings demonstrate that our HRL-based navigation framework excels in both static and dynamic scenarios. Finally, we implement the HRL-based navigation framework on a TurtleBot3 robot for physical validation experiments, which exhibits its strong generalization capabilities.
Abstract:The video visual relation detection (VidVRD) task is to identify objects and their relationships in videos, which is challenging due to the dynamic content, high annotation costs, and long-tailed distribution of relations. Visual language models (VLMs) help explore open-vocabulary visual relation detection tasks, yet often overlook the connections between various visual regions and their relations. Moreover, using VLMs to directly identify visual relations in videos poses significant challenges because of the large disparity between images and videos. Therefore, we propose a novel open-vocabulary VidVRD framework, termed OpenVidVRD, which transfers VLMs' rich knowledge and powerful capabilities to improve VidVRD tasks through prompt learning. Specificall y, We use VLM to extract text representations from automatically generated region captions based on the video's regions. Next, we develop a spatiotemporal refiner module to derive object-level relationship representations in the video by integrating cross-modal spatiotemporal complementary information. Furthermore, a prompt-driven strategy to align semantic spaces is employed to harness the semantic understanding of VLMs, enhancing the overall generalization ability of OpenVidVRD. Extensive experiments conducted on the VidVRD and VidOR public datasets show that the proposed model outperforms existing methods.