Abstract:In recent years, LLM has demonstrated remarkable proficiency in comprehending and generating natural language, with a growing prevalence in the domain of recommender systems. However, LLM continues to face a significant challenge in that it is highly susceptible to the influence of prompt words. This inconsistency in response to minor alterations in prompt input may compromise the accuracy and resilience of recommendation models. To address this issue, this paper proposes GANPrompt, a multi-dimensional large language model prompt diversity framework based on Generative Adversarial Networks (GANs). The framework enhances the model's adaptability and stability to diverse prompts by integrating GAN generation techniques with the deep semantic understanding capabilities of LLMs. GANPrompt first trains a generator capable of producing diverse prompts by analysing multidimensional user behavioural data. These diverse prompts are then used to train the LLM to improve its performance in the face of unseen prompts. Furthermore, to ensure a high degree of diversity and relevance of the prompts, this study introduces a mathematical theory-based diversity constraint mechanism that optimises the generated prompts to ensure that they are not only superficially distinct, but also semantically cover a wide range of user intentions. Through extensive experiments on multiple datasets, we demonstrate the effectiveness of the proposed framework, especially in improving the adaptability and robustness of recommender systems in complex and dynamic environments. The experimental results demonstrate that GANPrompt yields substantial enhancements in accuracy and robustness relative to existing state-of-the-art methodologies.
Abstract:Sequential recommendation, where user preference is dynamically inferred from sequential historical behaviors, is a critical task in recommender systems (RSs). To further optimize long-term user engagement, offline reinforcement-learning-based RSs have become a mainstream technique as they provide an additional advantage in avoiding global explorations that may harm online users' experiences. However, previous studies mainly focus on discrete action and policy spaces, which might have difficulties in handling dramatically growing items efficiently. To mitigate this issue, in this paper, we aim to design an algorithmic framework applicable to continuous policies. To facilitate the control in the low-dimensional but dense user preference space, we propose an \underline{\textbf{E}}fficient \underline{\textbf{Co}}ntinuous \underline{\textbf{C}}ontrol framework (ECoC). Based on a statistically tested assumption, we first propose the novel unified action representation abstracted from normalized user and item spaces. Then, we develop the corresponding policy evaluation and policy improvement procedures. During this process, strategic exploration and directional control in terms of unified actions are carefully designed and crucial to final recommendation decisions. Moreover, beneficial from unified actions, the conservatism regularization for policies and value functions are combined and perfectly compatible with the continuous framework. The resulting dual regularization ensures the successful offline training of RL-based recommendation policies. Finally, we conduct extensive experiments to validate the effectiveness of our framework. The results show that compared to the discrete baselines, our ECoC is trained far more efficiently. Meanwhile, the final policies outperform baselines in both capturing the offline data and gaining long-term rewards.
Abstract:The explainability of recommendation systems is crucial for enhancing user trust and satisfaction. Leveraging large language models (LLMs) offers new opportunities for comprehensive recommendation logic generation. However, in existing related studies, fine-tuning LLM models for recommendation tasks incurs high computational costs and alignment issues with existing systems, limiting the application potential of proven proprietary/closed-source LLM models, such as GPT-4. In this work, our proposed effective strategy LANE aligns LLMs with online recommendation systems without additional LLMs tuning, reducing costs and improving explainability. This innovative approach addresses key challenges in integrating language models with recommendation systems while fully utilizing the capabilities of powerful proprietary models. Specifically, our strategy operates through several key components: semantic embedding, user multi-preference extraction using zero-shot prompting, semantic alignment, and explainable recommendation generation using Chain of Thought (CoT) prompting. By embedding item titles instead of IDs and utilizing multi-head attention mechanisms, our approach aligns the semantic features of user preferences with those of candidate items, ensuring coherent and user-aligned recommendations. Sufficient experimental results including performance comparison, questionnaire voting, and visualization cases prove that our method can not only ensure recommendation performance, but also provide easy-to-understand and reasonable recommendation logic.
Abstract:Large Language Models (LLMs) are increasingly prominent in the recommendation systems domain. Existing studies usually utilize in-context learning or supervised fine-tuning on task-specific data to align LLMs into recommendations. However, the substantial bias in semantic spaces between language processing tasks and recommendation tasks poses a nonnegligible challenge. Specifically, without the adequate capturing ability of collaborative information, existing modeling paradigms struggle to capture behavior patterns within community groups, leading to LLMs' ineffectiveness in discerning implicit interaction semantic in recommendation scenarios. To address this, we consider enhancing the learning capability of language model-driven recommendation models for structured data, specifically by utilizing interaction graphs rich in collaborative semantics. We propose a Graph-Aware Learning for Language Model-Driven Recommendations (GAL-Rec). GAL-Rec enhances the understanding of user-item collaborative semantics by imitating the intent of Graph Neural Networks (GNNs) to aggregate multi-hop information, thereby fully exploiting the substantial learning capacity of LLMs to independently address the complex graphs in the recommendation system. Sufficient experimental results on three real-world datasets demonstrate that GAL-Rec significantly enhances the comprehension of collaborative semantics, and improves recommendation performance.
Abstract:Significant efforts have been directed toward integrating powerful Large Language Models (LLMs) with diverse modalities, particularly focusing on the fusion of vision, language, and audio data. However, the graph-structured data, inherently rich in structural and domain-specific knowledge, have not yet been gracefully adapted to LLMs. Existing methods either describe the graph with raw text, suffering the loss of graph structural information, or feed Graph Neural Network (GNN) embeddings directly into LLM at the cost of losing semantic representation. To bridge this gap, we introduce an innovative, end-to-end modality-aligning framework, equipped with a pretrained Dual-Residual Vector Quantized-Variational AutoEncoder (Dr.E). This framework is specifically designed to facilitate token-level alignment with LLMs, enabling an effective translation of the intrinsic `language' of graphs into comprehensible natural language. Our experimental evaluations on standard GNN node classification tasks demonstrate competitive performance against other state-of-the-art approaches. Additionally, our framework ensures interpretability, efficiency, and robustness, with its effectiveness further validated under both fine-tuning and few-shot settings. This study marks the first successful endeavor to achieve token-level alignment between GNNs and LLMs.
Abstract:Recently, large language models (LLMs) have been widely researched in the field of graph machine learning due to their outstanding abilities in language comprehension and learning. However, the significant gap between natural language tasks and topological structure modeling poses a nonnegligible challenge. Specifically, since natural language descriptions are not sufficient for LLMs to understand and process graph-structured data, fine-tuned LLMs perform even worse than some traditional GNN models on graph tasks, lacking inherent modeling capabilities for graph structures. Existing research overly emphasizes LLMs' understanding of semantic information captured by external models, while inadequately exploring graph topological structure modeling, thereby overlooking the genuine capabilities that LLMs lack. Consequently, in this paper, we introduce a new framework, LangTopo, which aligns graph structure modeling with natural language understanding at the token level. LangTopo quantifies the graph structure modeling capabilities of GNNs and LLMs by constructing a codebook for the graph modality and performs consistency maximization. This process aligns the text description of LLM with the topological modeling of GNN, allowing LLM to learn the ability of GNN to capture graph structures, enabling LLM to handle graph-structured data independently. We demonstrate the effectiveness of our proposed method on multiple datasets.
Abstract:People's social relationships are often manifested through their surroundings, with certain objects or interactions acting as symbols for specific relationships, e.g., wedding rings, roses, hugs, or holding hands. This brings unique challenges to recognizing social relationships, requiring understanding and capturing the essence of these contexts from visual appearances. However, current methods of social relationship understanding rely on the basic classification paradigm of detected persons and objects, which fails to understand the comprehensive context and often overlooks decisive social factors, especially subtle visual cues. To highlight the social-aware context and intricate details, we propose a novel approach that recognizes \textbf{Con}textual \textbf{So}cial \textbf{R}elationships (\textbf{ConSoR}) from a social cognitive perspective. Specifically, to incorporate social-aware semantics, we build a lightweight adapter upon the frozen CLIP to learn social concepts via our novel multi-modal side adapter tuning mechanism. Further, we construct social-aware descriptive language prompts (e.g., scene, activity, objects, emotions) with social relationships for each image, and then compel ConSoR to concentrate more intensively on the decisive visual social factors via visual-linguistic contrasting. Impressively, ConSoR outperforms previous methods with a 12.2\% gain on the People-in-Social-Context (PISC) dataset and a 9.8\% increase on the People-in-Photo-Album (PIPA) benchmark. Furthermore, we observe that ConSoR excels at finding critical visual evidence to reveal social relationships.
Abstract:In recommendation systems, users frequently engage in multiple types of behaviors, such as clicking, adding to a cart, and purchasing. However, with diversified behavior data, user behavior sequences will become very long in the short term, which brings challenges to the efficiency of the sequence recommendation model. Meanwhile, some behavior data will also bring inevitable noise to the modeling of user interests. To address the aforementioned issues, firstly, we develop the Efficient Behavior Sequence Miner (EBM) that efficiently captures intricate patterns in user behavior while maintaining low time complexity and parameter count. Secondly, we design hard and soft denoising modules for different noise types and fully explore the relationship between behaviors and noise. Finally, we introduce a contrastive loss function along with a guided training strategy to compare the valid information in the data with the noisy signal, and seamlessly integrate the two denoising processes to achieve a high degree of decoupling of the noisy signal. Sufficient experiments on real-world datasets demonstrate the effectiveness and efficiency of our approach in dealing with multi-behavior sequential recommendation.
Abstract:The rapidly changing landscape of technology and industries leads to dynamic skill requirements, making it crucial for employees and employers to anticipate such shifts to maintain a competitive edge in the labor market. Existing efforts in this area either rely on domain-expert knowledge or regarding skill evolution as a simplified time series forecasting problem. However, both approaches overlook the sophisticated relationships among different skills and the inner-connection between skill demand and supply variations. In this paper, we propose a Cross-view Hierarchical Graph learning Hypernetwork (CHGH) framework for joint skill demand-supply prediction. Specifically, CHGH is an encoder-decoder network consisting of i) a cross-view graph encoder to capture the interconnection between skill demand and supply, ii) a hierarchical graph encoder to model the co-evolution of skills from a cluster-wise perspective, and iii) a conditional hyper-decoder to jointly predict demand and supply variations by incorporating historical demand-supply gaps. Extensive experiments on three real-world datasets demonstrate the superiority of the proposed framework compared to seven baselines and the effectiveness of the three modules.
Abstract:The sequential recommendation system has been widely studied for its promising effectiveness in capturing dynamic preferences buried in users' sequential behaviors. Despite the considerable achievements, existing methods usually focus on intra-sequence modeling while overlooking exploiting global collaborative information by inter-sequence modeling, resulting in inferior recommendation performance. Therefore, previous works attempt to tackle this problem with a global collaborative item graph constructed by pre-defined rules. However, these methods neglect two crucial properties when capturing global collaborative information, i.e., adaptiveness and personalization, yielding sub-optimal user representations. To this end, we propose a graph-driven framework, named Adaptive and Personalized Graph Learning for Sequential Recommendation (APGL4SR), that incorporates adaptive and personalized global collaborative information into sequential recommendation systems. Specifically, we first learn an adaptive global graph among all items and capture global collaborative information with it in a self-supervised fashion, whose computational burden can be further alleviated by the proposed SVD-based accelerator. Furthermore, based on the graph, we propose to extract and utilize personalized item correlations in the form of relative positional encoding, which is a highly compatible manner of personalizing the utilization of global collaborative information. Finally, the entire framework is optimized in a multi-task learning paradigm, thus each part of APGL4SR can be mutually reinforced. As a generic framework, APGL4SR can outperform other baselines with significant margins. The code is available at https://github.com/Graph-Team/APGL4SR.