Medical Artificial Intelligence and Automation Laboratory and Department of Radiation Oncology, UT Southwestern Medical Center, Dallas TX 75235, USA
Abstract:As data sets grow in size and complexity, it is becoming more difficult to pull useful features from them using hand-crafted feature extractors. For this reason, deep learning (DL) frameworks are now widely popular. The Holy Grail of DL and one of the most mysterious challenges in all of modern ML is to develop a fundamental understanding of DL optimization and generalization. While numerous optimization techniques have been introduced in the literature to navigate the exploration of the highly non-convex DL optimization landscape, many survey papers reviewing them primarily focus on summarizing these methodologies, often overlooking the critical theoretical analyses of these methods. In this paper, we provide an extensive summary of the theoretical foundations of optimization methods in DL, including presenting various methodologies, their convergence analyses, and generalization abilities. This paper not only includes theoretical analysis of popular generic gradient-based first-order and second-order methods, but it also covers the analysis of the optimization techniques adapting to the properties of the DL loss landscape and explicitly encouraging the discovery of well-generalizing optimal points. Additionally, we extend our discussion to distributed optimization methods that facilitate parallel computations, including both centralized and decentralized approaches. We provide both convex and non-convex analysis for the optimization algorithms considered in this survey paper. Finally, this paper aims to serve as a comprehensive theoretical handbook on optimization methods for DL, offering insights and understanding to both novice and seasoned researchers in the field.
Abstract:Multimodal Large Language Models (MLLMs) have shown significant progress in offline video understanding. However, applying these models to real-world scenarios, such as autonomous driving and human-computer interaction, presents unique challenges due to the need for real-time processing of continuous online video streams. To this end, this paper presents systematic efforts from three perspectives: evaluation benchmark, model architecture, and training strategy. First, we introduce OVBench, a comprehensive question-answering benchmark specifically designed to evaluate models' ability to perceive, memorize, and reason within online video contexts. It features six core task types across three temporal contexts-past, present, and future-forming 16 subtasks from diverse datasets. Second, we propose a new Pyramid Memory Bank (PMB) that effectively retains key spatiotemporal information in video streams. Third, we proposed an offline-to-online learning paradigm, designing an interleaved dialogue format for online video data and constructing an instruction-tuning dataset tailored for online video training. This framework led to the development of VideoChat-Online, a robust and efficient model for online video understanding. Despite the lower computational cost and higher efficiency, VideoChat-Online outperforms existing state-of-the-art offline and online models across popular offline video benchmarks and OVBench, demonstrating the effectiveness of our model architecture and training strategy.
Abstract:Source-free domain adaptation (SFDA) involves adapting a model originally trained using a labeled dataset ({\em source domain}) to perform effectively on an unlabeled dataset ({\em target domain}) without relying on any source data during adaptation. This adaptation is especially crucial when significant disparities in data distributions exist between the two domains and when there are privacy concerns regarding the source model's training data. The absence of access to source data during adaptation makes it challenging to analytically estimate the domain gap. To tackle this issue, various techniques have been proposed, such as unsupervised clustering, contrastive learning, and continual learning. In this paper, we first conduct an extensive theoretical analysis of SFDA based on contrastive learning, primarily because it has demonstrated superior performance compared to other techniques. Motivated by the obtained insights, we then introduce a straightforward yet highly effective latent augmentation method tailored for contrastive SFDA. This augmentation method leverages the dispersion of latent features within the neighborhood of the query sample, guided by the source pre-trained model, to enhance the informativeness of positive keys. Our approach, based on a single InfoNCE-based contrastive loss, outperforms state-of-the-art SFDA methods on widely recognized benchmark datasets.
Abstract:Video try-on stands as a promising area for its tremendous real-world potential. Previous research on video try-on has primarily focused on transferring product clothing images to videos with simple human poses, while performing poorly with complex movements. To better preserve clothing details, those approaches are armed with an additional garment encoder, resulting in higher computational resource consumption. The primary challenges in this domain are twofold: (1) leveraging the garment encoder's capabilities in video try-on while lowering computational requirements; (2) ensuring temporal consistency in the synthesis of human body parts, especially during rapid movements. To tackle these issues, we propose a novel video try-on framework based on Diffusion Transformer(DiT), named Dynamic Try-On. To reduce computational overhead, we adopt a straightforward approach by utilizing the DiT backbone itself as the garment encoder and employing a dynamic feature fusion module to store and integrate garment features. To ensure temporal consistency of human body parts, we introduce a limb-aware dynamic attention module that enforces the DiT backbone to focus on the regions of human limbs during the denoising process. Extensive experiments demonstrate the superiority of Dynamic Try-On in generating stable and smooth try-on results, even for videos featuring complicated human postures.
Abstract:User interactions in recommender systems are inherently complex, often involving behaviors that go beyond simple acceptance or rejection. One particularly common behavior is hesitation, where users deliberate over recommended items, signaling uncertainty. Our large-scale surveys, with 6,644 and 3,864 responses respectively, confirm that hesitation is not only widespread but also has a profound impact on user experiences. When users spend additional time engaging with content they are ultimately uninterested in, this can lead to negative emotions, a phenomenon we term as tolerance. The surveys reveal that such tolerance behaviors often arise after hesitation and can erode trust, satisfaction, and long-term loyalty to the platform. For instance, a click might reflect a need for more information rather than genuine interest, and prolonged exposure to unsuitable content amplifies frustration. This misalignment between user intent and system interpretation introduces noise into recommendation training, resulting in suggestions that increase uncertainty and disengagement. To address these issues, we identified signals indicative of tolerance behavior and analyzed datasets from both e-commerce and short-video platforms. The analysis shows a strong correlation between increased tolerance behavior and decreased user activity. We integrated these insights into the training process of a recommender system for a major short-video platform. Results from four independent online A/B experiments demonstrated significant improvements in user retention, achieved with minimal additional computational costs. These findings underscore the importance of recognizing hesitation as a ubiquitous user behavior and addressing tolerance to enhance satisfaction, build trust, and sustain long-term engagement in recommender systems.
Abstract:Current collaborative perception methods often rely on fully annotated datasets, which can be expensive to obtain in practical situations. To reduce annotation costs, some works adopt sparsely supervised learning techniques and generate pseudo labels for the missing instances. However, these methods fail to achieve an optimal confidence threshold that harmonizes the quality and quantity of pseudo labels. To address this issue, we propose an end-to-end Collaborative perception Dual Teacher-Student framework (CoDTS), which employs adaptive complementary learning to produce both high-quality and high-quantity pseudo labels. Specifically, the Main Foreground Mining (MFM) module generates high-quality pseudo labels based on the prediction of the static teacher. Subsequently, the Supplement Foreground Mining (SFM) module ensures a balance between the quality and quantity of pseudo labels by adaptively identifying missing instances based on the prediction of the dynamic teacher. Additionally, the Neighbor Anchor Sampling (NAS) module is incorporated to enhance the representation of pseudo labels. To promote the adaptive complementary learning, we implement a staged training strategy that trains the student and dynamic teacher in a mutually beneficial manner. Extensive experiments demonstrate that the CoDTS effectively ensures an optimal balance of pseudo labels in both quality and quantity, establishing a new state-of-the-art in sparsely supervised collaborative perception.
Abstract:Purpose: A reliable cancer prognosis model for clear cell renal cell carcinoma (ccRCC) can enhance personalized treatment. We developed a multi-modal ensemble model (MMEM) that integrates pretreatment clinical data, multi-omics data, and histopathology whole slide image (WSI) data to predict overall survival (OS) and disease-free survival (DFS) for ccRCC patients. Methods: We analyzed 226 patients from The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) dataset, which includes OS, DFS follow-up data, and five data modalities: clinical data, WSIs, and three multi-omics datasets (mRNA, miRNA, and DNA methylation). Separate survival models were built for OS and DFS. Cox-proportional hazards (CPH) model with forward feature selection is used for clinical and multi-omics data. Features from WSIs were extracted using ResNet and three general-purpose foundation models. A deep learning-based CPH model predicted survival using encoded WSI features. Risk scores from all models were combined based on training performance. Results: Performance was assessed using concordance index (C-index) and AUROC. The clinical feature-based CPH model received the highest weight for both OS and DFS tasks. Among WSI-based models, the general-purpose foundation model (UNI) achieved the best performance. The final MMEM model surpassed single-modality models, achieving C-indices of 0.820 (OS) and 0.833 (DFS), and AUROC values of 0.831 (3-year patient death) and 0.862 (cancer recurrence). Using predicted risk medians to stratify high- and low-risk groups, log-rank tests showed improved performance in both OS and DFS compared to single-modality models. Conclusion: MMEM is the first multi-modal model for ccRCC patients, integrating five data modalities. It outperformed single-modality models in prognostic ability and has the potential to assist in ccRCC patient management if independently validated.
Abstract:Classifying hyperspectral images (HSIs) is a complex task in remote sensing due to the high-dimensional nature and volume of data involved. To address these challenges, we propose the Spectral-Spatial non-Linear Model, a novel framework that significantly reduces data volume while enhancing classification accuracy. Our model employs a bidirectional reversed convolutional neural network (CNN) to efficiently extract spectral features, complemented by a specialized block for spatial feature analysis. This hybrid approach leverages the operational efficiency of CNNs and incorporates dynamic feature extraction inspired by attention mechanisms, optimizing performance without the high computational demands typically associated with transformer-based models. The SS non-Linear Model is designed to process hyperspectral data bidirectionally, achieving notable classification and efficiency improvements by fusing spectral and spatial features effectively. This approach yields superior classification accuracy compared to existing benchmarks while maintaining computational efficiency, making it suitable for resource-constrained environments. We validate the SS non-Linear Model on three widely recognized datasets, Houston 2013, Indian Pines, and Pavia University, demonstrating its ability to outperform current state-of-the-art models in HSI classification and efficiency. This work highlights the innovative methodology of the SS non-Linear Model and its practical benefits for remote sensing applications, where both data efficiency and classification accuracy are critical. For further details, please refer to our code repository on GitHub: HSILinearModel.
Abstract:The integration of hyperspectral imaging (HSI) and LiDAR data within new linear feature spaces offers a promising solution to the challenges posed by the high-dimensionality and redundancy inherent in HSIs. This study introduces a dual linear fused space framework that capitalizes on bidirectional reversed convolutional neural network (CNN) pathways, coupled with a specialized spatial analysis block. This approach combines the computational efficiency of CNNs with the adaptability of attention mechanisms, facilitating the effective fusion of spectral and spatial information. The proposed method not only enhances data processing and classification accuracy, but also mitigates the computational burden typically associated with advanced models such as Transformers. Evaluations of the Houston 2013 dataset demonstrate that our approach surpasses existing state-of-the-art models. This advancement underscores the potential of the framework in resource-constrained environments and its significant contributions to the field of remote sensing.
Abstract:Vision-based tactile sensors, through high-resolution optical measurements, can effectively perceive the geometric shape of objects and the force information during the contact process, thus helping robots acquire higher-dimensional tactile data. Vision-based tactile sensor simulation supports the acquisition and understanding of tactile information without physical sensors by accurately capturing and analyzing contact behavior and physical properties. However, the complexity of contact dynamics and lighting modeling limits the accurate reproduction of real sensor responses in simulations, making it difficult to meet the needs of different sensor setups and affecting the reliability and effectiveness of strategy transfer to practical applications. In this letter, we propose a contact-condition guided diffusion model that maps RGB images of objects and contact force data to high-fidelity, detail-rich vision-based tactile sensor images. Evaluations show that the three-channel tactile images generated by this method achieve a 60.58% reduction in mean squared error and a 38.1% reduction in marker displacement error compared to existing approaches based on lighting model and mechanical model, validating the effectiveness of our approach. The method is successfully applied to various types of tactile vision sensors and can effectively generate corresponding tactile images under complex loads. Additionally, it demonstrates outstanding reconstruction of fine texture features of objects in a Montessori tactile board texture generation task.