Abstract:Searching for the Extreme Operating Conditions (EOCs) is one of the core problems of power system relay protection setting calculation. The current methods based on brute-force search, heuristic algorithms, and mathematical programming can hardly meet the requirements of today's power systems in terms of computation speed due to the drastic changes in operating conditions induced by renewables and power electronics. This paper proposes an EOC fast search method, named Graph Dueling Double Deep Q Network (Graph D3QN), which combines graph neural network and deep reinforcement learning to address this challenge. First, the EOC search problem is modeled as a Markov decision process, where the information of the underlying power system is extracted using graph neural networks, so that the EOC of the system can be found via deep reinforcement learning. Then, a two-stage Guided Learning and Free Exploration (GLFE) training framework is constructed to accelerate the convergence speed of reinforcement learning. Finally, the proposed Graph D3QN method is validated through case studies of searching maximum fault current for relay protection setting calculation on the IEEE 39-bus and 118-bus systems. The experimental results demonstrate that Graph D3QN can reduce the computation time by 10 to 1000 times while guaranteeing the accuracy of the selected EOCs.
Abstract:The Kalman filter (KF)-based active noise control (ANC) system demonstrates superior tracking and faster convergence compared to the least mean square (LMS) method, particularly in dynamic noise cancellation scenarios. However, in environments with extremely high noise levels, the power of the control signal can exceed the system's rated output power due to hardware limitations, leading to output saturation and subsequent non-linearity. To mitigate this issue, a modified KF with an output constraint is proposed. In this approach, the disturbance treated as an measurement is re-scaled by a constraint factor, which is determined by the system's rated power, the secondary path gain, and the disturbance power. As a result, the output power of the system, i.e. the control signal, is indirectly constrained within the maximum output of the system, ensuring stability. Simulation results indicate that the proposed algorithm not only achieves rapid suppression of dynamic noise but also effectively prevents non-linearity due to output saturation, highlighting its practical significance.
Abstract:With the emergence of audio-language models, constructing large-scale paired audio-language datasets has become essential yet challenging for model development, primarily due to the time-intensive and labour-heavy demands involved. While large language models (LLMs) have improved the efficiency of synthetic audio caption generation, current approaches struggle to effectively extract and incorporate detailed audio information. In this paper, we propose an automated pipeline that integrates audio-language models for fine-grained content extraction, LLMs for synthetic caption generation, and a contrastive language-audio pretraining (CLAP) model-based refinement process to improve the quality of captions. Specifically, we employ prompt chaining techniques in the content extraction stage to obtain accurate and fine-grained audio information, while we use the refinement process to mitigate potential hallucinations in the generated captions. Leveraging the AudioSet dataset and the proposed approach, we create AudioSetCaps, a dataset comprising 1.9 million audio-caption pairs, the largest audio-caption dataset at the time of writing. The models trained with AudioSetCaps achieve state-of-the-art performance on audio-text retrieval with R@1 scores of 46.3% for text-to-audio and 59.7% for audio-to-text retrieval and automated audio captioning with the CIDEr score of 84.8. As our approach has shown promising results with AudioSetCaps, we create another dataset containing 4.1 million synthetic audio-language pairs based on the Youtube-8M and VGGSound datasets. To facilitate research in audio-language learning, we have made our pipeline, datasets with 6 million audio-language pairs, and pre-trained models publicly available at https://github.com/JishengBai/AudioSetCaps.
Abstract:Virtual sensing (VS) technology enables active noise control (ANC) systems to attenuate noise at virtual locations distant from the physical error microphones. Appropriate auxiliary filters (AF) can significantly enhance the effectiveness of VS approaches. The selection of appropriate AF for various types of noise can be automatically achieved using convolutional neural networks (CNNs). However, training the CNN model for different ANC systems is often labour-intensive and time-consuming. To tackle this problem, we propose a novel method, Transferable Selective VS, by integrating metric-learning technology into CNN-based VS approaches. The Transferable Selective VS method allows a pre-trained CNN to be applied directly to new ANC systems without requiring retraining, and it can handle unseen noise types. Numerical simulations demonstrate the effectiveness of the proposed method in attenuating sudden-varying broadband noises and real-world noises.
Abstract:Semantic communication (SemCom) has emerged as a new paradigm for communication systems, with deep learning (DL) models being one of the key drives to shift from the accuracy of bit/symbol to the semantics and pragmatics of data. Nevertheless, DL-based SemCom systems often face performance bottlenecks due to overfitting, poor generalization, and sensitivity to outliers. Furthermore, the varying-fading gains and noises with uncertain signal-to-noise ratios (SNRs) commonly present in wireless channels usually restrict the accuracy of semantic information transmission. Consequently, to address the aforementioned issues, this paper constructs a SemCom system based on the latent diffusion model, and proposes three improvements compared to existing works: i) To handle potential outliers in the source data, semantic errors obtained by projected gradient descent based on the vulnerabilities of DL models, are utilized to update the parameters and obtain an outlier-robust encoder. ii) A lightweight single-layer latent space transformation adapter completes one-shot learning at transmitter and is placed before the decoder at receiver, enabling adaptation for out-of-distribution data or enhancing human-perceptual quality. iii) An end-to-end consistency distillation (EECD) strategy is used to distill the diffusion models trained in latent space, enabling deterministic single or few-step real-time denoising in various noisy channels while maintaining high semantic quality. Extensive numerical experiments across different datasets demonstrate the superiority of the proposed SemCom system, consistently proving its robustness to outliers, the capability to transmit data with unknown distributions, and the ability to perform real-time channel denoising tasks while preserving high human perceptual quality, outperforming the existing denoising approaches in semantic metrics such as MS-SSIM and LPIPS.
Abstract:Multichannel active noise control (ANC) systems are designed to create a large zone of quietness (ZoQ) around the error microphones, however, the placement of these microphones often presents challenges due to physical limitations. Virtual sensing technique that effectively suppresses the noise far from the physical error microphones is one of the most promising solutions. Nevertheless, the conventional multichannel virtual sensing ANC (MVANC) system based on the multichannel filtered reference least mean square (MCFxLMS) algorithm often suffers from high computational complexity. This paper proposes a feedforward MVANC system that incorporates the multichannel adjoint least mean square (MCALMS) algorithm to overcome these limitations effectively. Computational analysis demonstrates the improvement of computational efficiency and numerical simulations exhibit comparable noise reduction performance at virtual locations compared to the conventional MCFxLMS algorithm. Additionally, the effects of varied tuning noises on system performance are also investigated, providing insightful findings on optimizing MVANC systems.
Abstract:Active Noise Control (ANC) is a widely adopted technology for reducing environmental noise across various scenarios. This paper focuses on enhancing noise reduction performance, particularly through the refinement of signal quality fed into ANC systems. We discuss the main wireless technique integrated into the ANC system, equipped with some innovative algorithms, in diverse environments. Instead of using microphone arrays, which increase the computation complexity of the ANC system, to isolate multiple noise sources to improve noise reduction performance, the application of the wireless technique avoids extra computation demand. Wireless transmissions of reference, error, and control signals are also applied to improve the convergence performance of the ANC system. Furthermore, this paper lists some wireless ANC applications, such as earbuds, headphones, windows, and headrests, underscoring their adaptability and efficiency in various settings.
Abstract:Delayless noise control is achieved by our earlier generative fixed-filter active noise control (GFANC) framework through efficient coordination between the co-processor and real-time controller. However, the one-dimensional convolutional neural network (1D CNN) in the co-processor requires initial training using labelled noise datasets. Labelling noise data can be resource-intensive and may introduce some biases. In this paper, we propose an unsupervised-GFANC approach to simplify the 1D CNN training process and enhance its practicality. During training, the co-processor and real-time controller are integrated into an end-to-end differentiable ANC system. This enables us to use the accumulated squared error signal as the loss for training the 1D CNN. With this unsupervised learning paradigm, the unsupervised-GFANC method not only omits the labelling process but also exhibits better noise reduction performance compared to the supervised GFANC method in real noise experiments.
Abstract:Acoustic scene classification (ASC) is a crucial research problem in computational auditory scene analysis, and it aims to recognize the unique acoustic characteristics of an environment. One of the challenges of the ASC task is domain shift caused by a distribution gap between training and testing data. Since 2018, ASC challenges have focused on the generalization of ASC models across different recording devices. Although this task in recent years has achieved substantial progress in device generalization, the challenge of domain shift between different regions, involving characteristics such as time, space, culture, and language, remains insufficiently explored at present. In addition, considering the abundance of unlabeled acoustic scene data in the real world, it is important to study the possible ways to utilize these unlabelled data. Therefore, we introduce the task Semi-supervised Acoustic Scene Classification under Domain Shift in the ICME 2024 Grand Challenge. We encourage participants to innovate with semi-supervised learning techniques, aiming to develop more robust ASC models under domain shift.
Abstract:This paper presents a detailed description of our proposed methods for the ICASSP 2024 Cadenza Challenge. Experimental results show that the proposed system can achieve better performance than official baselines.