Abstract:With the emergence of audio-language models, constructing large-scale paired audio-language datasets has become essential yet challenging for model development, primarily due to the time-intensive and labour-heavy demands involved. While large language models (LLMs) have improved the efficiency of synthetic audio caption generation, current approaches struggle to effectively extract and incorporate detailed audio information. In this paper, we propose an automated pipeline that integrates audio-language models for fine-grained content extraction, LLMs for synthetic caption generation, and a contrastive language-audio pretraining (CLAP) model-based refinement process to improve the quality of captions. Specifically, we employ prompt chaining techniques in the content extraction stage to obtain accurate and fine-grained audio information, while we use the refinement process to mitigate potential hallucinations in the generated captions. Leveraging the AudioSet dataset and the proposed approach, we create AudioSetCaps, a dataset comprising 1.9 million audio-caption pairs, the largest audio-caption dataset at the time of writing. The models trained with AudioSetCaps achieve state-of-the-art performance on audio-text retrieval with R@1 scores of 46.3% for text-to-audio and 59.7% for audio-to-text retrieval and automated audio captioning with the CIDEr score of 84.8. As our approach has shown promising results with AudioSetCaps, we create another dataset containing 4.1 million synthetic audio-language pairs based on the Youtube-8M and VGGSound datasets. To facilitate research in audio-language learning, we have made our pipeline, datasets with 6 million audio-language pairs, and pre-trained models publicly available at https://github.com/JishengBai/AudioSetCaps.
Abstract:Sound Event Detection (SED) is challenging in noisy environments where overlapping sounds obscure target events. Language-queried audio source separation (LASS) aims to isolate the target sound events from a noisy clip. However, this approach can fail when the exact target sound is unknown, particularly in noisy test sets, leading to reduced performance. To address this issue, we leverage the capabilities of large language models (LLMs) to analyze and summarize acoustic data. By using LLMs to identify and select specific noise types, we implement a noise augmentation method for noise-robust fine-tuning. The fine-tuned model is applied to predict clip-wise event predictions as text queries for the LASS model. Our studies demonstrate that the proposed method improves SED performance in noisy environments. This work represents an early application of LLMs in noise-robust SED and suggests a promising direction for handling overlapping events in SED. Codes and pretrained models are available at https://github.com/apple-yinhan/Noise-robust-SED.
Abstract:In this technical report, we describe the SNTL-NTU team's submission for Task 1 Data-Efficient Low-Complexity Acoustic Scene Classification of the detection and classification of acoustic scenes and events (DCASE) 2024 challenge. Three systems are introduced to tackle training splits of different sizes. For small training splits, we explored reducing the complexity of the provided baseline model by reducing the number of base channels. We introduce data augmentation in the form of mixup to increase the diversity of training samples. For the larger training splits, we use FocusNet to provide confusing class information to an ensemble of multiple Patchout faSt Spectrogram Transformer (PaSST) models and baseline models trained on the original sampling rate of 44.1 kHz. We use Knowledge Distillation to distill the ensemble model to the baseline student model. Training the systems on the TAU Urban Acoustic Scene 2022 Mobile development dataset yielded the highest average testing accuracy of (62.21, 59.82, 56.81, 53.03, 47.97)% on split (100, 50, 25, 10, 5)% respectively over the three systems.
Abstract:Sound event localization and detection (SELD) is critical for various real-world applications, including smart monitoring and Internet of Things (IoT) systems. Although deep neural networks (DNNs) represent the state-of-the-art approach for SELD, their significant computational complexity and model sizes present challenges for deployment on resource-constrained edge devices, especially under real-time conditions. Despite the growing need for real-time SELD, research in this area remains limited. In this paper, we investigate the unique challenges of deploying SELD systems for real-world, real-time applications by performing extensive experiments on a commercially available Raspberry Pi 3 edge device. Our findings reveal two critical, often overlooked considerations: the high computational cost of feature extraction and the performance degradation associated with low-latency, real-time inference. This paper provides valuable insights and considerations for future work toward developing more efficient and robust real-time SELD systems
Abstract:This technical report details our systems submitted for Task 3 of the DCASE 2024 Challenge: Audio and Audiovisual Sound Event Localization and Detection (SELD) with Source Distance Estimation (SDE). We address only the audio-only SELD with SDE (SELDDE) task in this report. We propose to improve the existing ResNet-Conformer architectures with Squeeze-and-Excitation blocks in order to introduce additional forms of channel- and spatial-wise attention. In order to improve SELD performance, we also utilize the Spatial Cue-Augmented Log-Spectrogram (SALSA) features over the commonly used log-mel spectra features for polyphonic SELD. We complement the existing Sony-TAu Realistic Spatial Soundscapes 2023 (STARSS23) dataset with the audio channel swapping technique and synthesize additional data using the SpatialScaper generator. We also perform distance scaling in order to prevent large distance errors from contributing more towards the loss function. Finally, we evaluate our approach on the evaluation subset of the STARSS23 dataset.
Abstract:This work explores domain generalization (DG) for sound event detection (SED), advancing adaptability towards real-world scenarios. Our approach employs a mean-teacher framework with domain generalization to integrate heterogeneous training data, while preserving the SED model performance across the datasets. Specifically, we first apply mixstyle to the frequency dimension to adapt the mel-spectrograms from different domains. Next, we use the adaptive residual normalization method to generalize features across multiple domains by applying instance normalization in the frequency dimension. Lastly, we use the sound event bounding boxes method for post-processing. Our approach integrates features from bidirectional encoder representations from audio transformers and a convolutional recurrent neural network. We evaluate the proposed approach on DCASE 2024 Challenge Task 4 dataset, measuring polyphonic SED score (PSDS) on the DESED dataset and macro-average pAUC on the MAESTRO dataset. The results indicate that the proposed DG-based method improves both PSDS and macro-average pAUC compared to the challenge baseline.
Abstract:This report presents the systems developed and submitted by Fortemedia Singapore (FMSG) and Joint Laboratory of Environmental Sound Sensing (JLESS) for DCASE 2024 Task 4. The task focuses on recognizing event classes and their time boundaries, given that multiple events can be present and may overlap in an audio recording. The novelty this year is a dataset with two sources, making it challenging to achieve good performance without knowing the source of the audio clips during evaluation. To address this, we propose a sound event detection method using domain generalization. Our approach integrates features from bidirectional encoder representations from audio transformers and a convolutional recurrent neural network. We focus on three main strategies to improve our method. First, we apply mixstyle to the frequency dimension to adapt the mel-spectrograms from different domains. Second, we consider training loss of our model specific to each datasets for their corresponding classes. This independent learning framework helps the model extract domain-specific features effectively. Lastly, we use the sound event bounding boxes method for post-processing. Our proposed method shows superior macro-average pAUC and polyphonic SED score performance on the DCASE 2024 Challenge Task 4 validation dataset and public evaluation dataset.
Abstract:Deep learning-based sound event localization and classification is an emerging research area within wireless acoustic sensor networks. However, current methods for sound event localization and classification typically rely on a single microphone array, making them susceptible to signal attenuation and environmental noise, which limits their monitoring range. Moreover, methods using multiple microphone arrays often focus solely on source localization, neglecting the aspect of sound event classification. In this paper, we propose a deep learning-based method that employs multiple features and attention mechanisms to estimate the location and class of sound source. We introduce a Soundmap feature to capture spatial information across multiple frequency bands. We also use the Gammatone filter to generate acoustic features more suitable for outdoor environments. Furthermore, we integrate attention mechanisms to learn channel-wise relationships and temporal dependencies within the acoustic features. To evaluate our proposed method, we conduct experiments using simulated datasets with different levels of noise and size of monitoring areas, as well as different arrays and source positions. The experimental results demonstrate the superiority of our proposed method over state-of-the-art methods in both sound event classification and sound source localization tasks. And we provide further analysis to explain the reasons for the observed errors.
Abstract:Acoustic scene classification (ASC) is a crucial research problem in computational auditory scene analysis, and it aims to recognize the unique acoustic characteristics of an environment. One of the challenges of the ASC task is domain shift caused by a distribution gap between training and testing data. Since 2018, ASC challenges have focused on the generalization of ASC models across different recording devices. Although this task in recent years has achieved substantial progress in device generalization, the challenge of domain shift between different regions, involving characteristics such as time, space, culture, and language, remains insufficiently explored at present. In addition, considering the abundance of unlabeled acoustic scene data in the real world, it is important to study the possible ways to utilize these unlabelled data. Therefore, we introduce the task Semi-supervised Acoustic Scene Classification under Domain Shift in the ICME 2024 Grand Challenge. We encourage participants to innovate with semi-supervised learning techniques, aiming to develop more robust ASC models under domain shift.
Abstract:This paper presents a detailed description of our proposed methods for the ICASSP 2024 Cadenza Challenge. Experimental results show that the proposed system can achieve better performance than official baselines.