Abstract:With the emergence of audio-language models, constructing large-scale paired audio-language datasets has become essential yet challenging for model development, primarily due to the time-intensive and labour-heavy demands involved. While large language models (LLMs) have improved the efficiency of synthetic audio caption generation, current approaches struggle to effectively extract and incorporate detailed audio information. In this paper, we propose an automated pipeline that integrates audio-language models for fine-grained content extraction, LLMs for synthetic caption generation, and a contrastive language-audio pretraining (CLAP) model-based refinement process to improve the quality of captions. Specifically, we employ prompt chaining techniques in the content extraction stage to obtain accurate and fine-grained audio information, while we use the refinement process to mitigate potential hallucinations in the generated captions. Leveraging the AudioSet dataset and the proposed approach, we create AudioSetCaps, a dataset comprising 1.9 million audio-caption pairs, the largest audio-caption dataset at the time of writing. The models trained with AudioSetCaps achieve state-of-the-art performance on audio-text retrieval with R@1 scores of 46.3% for text-to-audio and 59.7% for audio-to-text retrieval and automated audio captioning with the CIDEr score of 84.8. As our approach has shown promising results with AudioSetCaps, we create another dataset containing 4.1 million synthetic audio-language pairs based on the Youtube-8M and VGGSound datasets. To facilitate research in audio-language learning, we have made our pipeline, datasets with 6 million audio-language pairs, and pre-trained models publicly available at https://github.com/JishengBai/AudioSetCaps.
Abstract:Sound event localization and detection (SELD) has seen substantial advancements through learning-based methods. These systems, typically trained from scratch on specific datasets, have shown considerable generalization capabilities. Recently, deep neural networks trained on large-scale datasets have achieved remarkable success in the sound event classification (SEC) field, prompting an open question of whether these advancements can be extended to develop general-purpose SELD models. In this paper, leveraging the power of pre-trained SEC models, we propose pre-trained SELD networks (PSELDNets) on large-scale synthetic datasets. These synthetic datasets, generated by convolving sound events with simulated spatial room impulse responses (SRIRs), contain 1,167 hours of audio clips with an ontology of 170 sound classes. These PSELDNets are transferred to downstream SELD tasks. When we adapt PSELDNets to specific scenarios, particularly in low-resource data cases, we introduce a data-efficient fine-tuning method, AdapterBit. PSELDNets are evaluated on a synthetic-test-set using collected SRIRs from TAU Spatial Room Impulse Response Database (TAU-SRIR DB) and achieve satisfactory performance. We also conduct our experiments to validate the transferability of PSELDNets to three publicly available datasets and our own collected audio recordings. Results demonstrate that PSELDNets surpass state-of-the-art systems across all publicly available datasets. Given the need for direction-of-arrival estimation, SELD generally relies on sufficient multi-channel audio clips. However, incorporating the AdapterBit, PSELDNets show more efficient adaptability to various tasks using minimal multi-channel or even just monophonic audio clips, outperforming the traditional fine-tuning approaches.
Abstract:This paper introduces briefly the history and growth of the Detection and Classification of Acoustic Scenes and Events (DCASE) challenge, workshop, research area and research community. Created in 2013 as a data evaluation challenge, DCASE has become a major research topic in the Audio and Acoustic Signal Processing area. Its success comes from a combination of factors: the challenge offers a large variety of tasks that are renewed each year; and the workshop offers a channel for dissemination of related work, engaging a young and dynamic community. At the same time, DCASE faces its own challenges, growing and expanding to different areas. One of the core principles of DCASE is open science and reproducibility: publicly available datasets, baseline systems, technical reports and workshop publications. While the DCASE challenge and workshop are independent of IEEE SPS, the challenge receives annual endorsement from the AASP TC, and the DCASE community contributes significantly to the ICASSP flagship conference and the success of SPS in many of its activities.
Abstract:This paper presents a residential audio dataset to support sound event detection research for smart home applications aimed at promoting wellbeing for older adults. The dataset is constructed by deploying audio recording systems in the homes of 8 participants aged 55-80 years for a 7-day period. Acoustic characteristics are documented through detailed floor plans and construction material information to enable replication of the recording environments for AI model deployment. A novel automated speech removal pipeline is developed, using pre-trained audio neural networks to detect and remove segments containing spoken voice, while preserving segments containing other sound events. The resulting dataset consists of privacy-compliant audio recordings that accurately capture the soundscapes and activities of daily living within residential spaces. The paper details the dataset creation methodology, the speech removal pipeline utilizing cascaded model architectures, and an analysis of the vocal label distribution to validate the speech removal process. This dataset enables the development and benchmarking of sound event detection models tailored specifically for in-home applications.
Abstract:Language-queried audio source separation (LASS) focuses on separating sounds using textual descriptions of the desired sources. Current methods mainly use discriminative approaches, such as time-frequency masking, to separate target sounds and minimize interference from other sources. However, these models face challenges when separating overlapping soundtracks, which may lead to artifacts such as spectral holes or incomplete separation. Rectified flow matching (RFM), a generative model that establishes linear relations between the distribution of data and noise, offers superior theoretical properties and simplicity, but has not yet been explored in sound separation. In this work, we introduce FlowSep, a new generative model based on RFM for LASS tasks. FlowSep learns linear flow trajectories from noise to target source features within the variational autoencoder (VAE) latent space. During inference, the RFM-generated latent features are reconstructed into a mel-spectrogram via the pre-trained VAE decoder, followed by a pre-trained vocoder to synthesize the waveform. Trained on 1,680 hours of audio data, FlowSep outperforms the state-of-the-art models across multiple benchmarks, as evaluated with subjective and objective metrics. Additionally, our results show that FlowSep surpasses a diffusion-based LASS model in both separation quality and inference efficiency, highlighting its strong potential for audio source separation tasks. Code, pre-trained models and demos can be found at: https://audio-agi.github.io/FlowSep_demo/.
Abstract:Audio Event Recognition (AER) traditionally focuses on detecting and identifying audio events. Most existing AER models tend to detect all potential events without considering their varying significance across different contexts. This makes the AER results detected by existing models often have a large discrepancy with human auditory perception. Although this is a critical and significant issue, it has not been extensively studied by the Detection and Classification of Sound Scenes and Events (DCASE) community because solving it is time-consuming and labour-intensive. To address this issue, this paper introduces the concept of semantic importance in AER, focusing on exploring the differences between human perception and model inference. This paper constructs a Multi-Annotated Foreground Audio Event Recognition (MAFAR) dataset, which comprises audio recordings labelled by 10 professional annotators. Through labelling frequency and variance, the MAFAR dataset facilitates the quantification of semantic importance and analysis of human perception. By comparing human annotations with the predictions of ensemble pre-trained models, this paper uncovers a significant gap between human perception and model inference in both semantic identification and existence detection of audio events. Experimental results reveal that human perception tends to ignore subtle or trivial events in the event semantic identification, while model inference is easily affected by events with noises. Meanwhile, in event existence detection, models are usually more sensitive than humans.
Abstract:The broadcasting industry is increasingly adopting IP techniques, revolutionising both live and pre-recorded content production, from news gathering to live music events. IP broadcasting allows for the transport of audio and video signals in an easily configurable way, aligning with modern networking techniques. This shift towards an IP workflow allows for much greater flexibility, not only in routing signals but with the integration of tools using standard web development techniques. One possible tool could include the use of live audio tagging, which has a number of uses in the production of content. These include from automated closed captioning to identifying unwanted sound events within a scene. In this paper, we describe the process of containerising an audio tagging model into a microservice, a small segregated code module that can be integrated into a multitude of different network setups. The goal is to develop a modular, accessible, and flexible tool capable of seamless deployment into broadcasting workflows of all sizes, from small productions to large corporations. Challenges surrounding latency of the selected audio tagging model and its effect on the usefulness of the end product are discussed.
Abstract:Significant improvement has been achieved in automated audio captioning (AAC) with recent models. However, these models have become increasingly large as their performance is enhanced. In this work, we propose a knowledge distillation (KD) framework for AAC. Our analysis shows that in the encoder-decoder based AAC models, it is more effective to distill knowledge into the encoder as compared with the decoder. To this end, we incorporate encoder-level KD loss into training, in addition to the standard supervised loss and sequence-level KD loss. We investigate two encoder-level KD methods, based on mean squared error (MSE) loss and contrastive loss, respectively. Experimental results demonstrate that contrastive KD is more robust than MSE KD, exhibiting superior performance in data-scarce situations. By leveraging audio-only data into training in the KD framework, our student model achieves competitive performance, with an inference speed that is 19 times faster\footnote{An online demo is available at \url{https://huggingface.co/spaces/wsntxxn/efficient_audio_captioning}}.
Abstract:Universal sound separation (USS) is a task of separating mixtures of arbitrary sound sources. Typically, universal separation models are trained from scratch in a supervised manner, using labeled data. Self-supervised learning (SSL) is an emerging deep learning approach that leverages unlabeled data to obtain task-agnostic representations, which can benefit many downstream tasks. In this paper, we propose integrating a self-supervised pre-trained model, namely the audio masked autoencoder (A-MAE), into a universal sound separation system to enhance its separation performance. We employ two strategies to utilize SSL embeddings: freezing or updating the parameters of A-MAE during fine-tuning. The SSL embeddings are concatenated with the short-time Fourier transform (STFT) to serve as input features for the separation model. We evaluate our methods on the AudioSet dataset, and the experimental results indicate that the proposed methods successfully enhance the separation performance of a state-of-the-art ResUNet-based USS model.
Abstract:Generative models have shown significant achievements in audio generation tasks. However, existing models struggle with complex and detailed prompts, leading to potential performance degradation. We hypothesize that this problem stems from the low quality and relatively small quantity of training data. In this work, we aim to create a large-scale audio dataset with rich captions for improving audio generation models. We develop an automated pipeline to generate detailed captions for audio-visual datasets by transforming predicted visual captions, audio captions, and tagging labels into comprehensive descriptions using a Large Language Model (LLM). We introduce Sound-VECaps, a dataset comprising 1.66M high-quality audio-caption pairs with enriched details including audio event orders, occurred places and environment information. We demonstrate that training with Sound-VECaps significantly enhances the capability of text-to-audio generation models to comprehend and generate audio from complex input prompts, improving overall system performance. Furthermore, we conduct ablation studies of Sound-VECaps across several audio-language tasks, suggesting its potential in advancing audio-text representation learning. Our dataset and models are available online.