Abstract:Locating the right sound effect efficiently is an important yet challenging topic for audio production. Most current sound-searching systems rely on pre-annotated audio labels created by humans, which can be time-consuming to produce and prone to inaccuracies, limiting the efficiency of audio production. Following the recent advancement of contrastive language-audio pre-training (CLAP) models, we explore an alternative CLAP-based sound-searching system (CLAP-UI) that does not rely on human annotations. To evaluate the effectiveness of CLAP-UI, we conducted comparative experiments with a widely used sound effect searching platform, the BBC Sound Effect Library. Our study evaluates user performance, cognitive load, and satisfaction through ecologically valid tasks based on professional sound-searching workflows. Our result shows that CLAP-UI demonstrated significantly enhanced productivity and reduced frustration while maintaining comparable cognitive demands. We also qualitatively analyzed the participants' feedback, which offered valuable perspectives on the design of future AI-assisted sound search systems.
Abstract:This paper presents a residential audio dataset to support sound event detection research for smart home applications aimed at promoting wellbeing for older adults. The dataset is constructed by deploying audio recording systems in the homes of 8 participants aged 55-80 years for a 7-day period. Acoustic characteristics are documented through detailed floor plans and construction material information to enable replication of the recording environments for AI model deployment. A novel automated speech removal pipeline is developed, using pre-trained audio neural networks to detect and remove segments containing spoken voice, while preserving segments containing other sound events. The resulting dataset consists of privacy-compliant audio recordings that accurately capture the soundscapes and activities of daily living within residential spaces. The paper details the dataset creation methodology, the speech removal pipeline utilizing cascaded model architectures, and an analysis of the vocal label distribution to validate the speech removal process. This dataset enables the development and benchmarking of sound event detection models tailored specifically for in-home applications.