Abstract:Estimating the 6D pose of textureless objects from RBG images is an important problem in robotics. Due to appearance ambiguities, rotational symmetries, and severe occlusions, single-view based 6D pose estimators are still unable to handle a wide range of objects, motivating research towards multi-view pose estimation and next-best-view prediction that addresses these limitations. In this work, we propose a comprehensive active perception framework for estimating the 6D poses of textureless objects using only RGB images. Our approach is built upon a key idea: decoupling the 6D pose estimation into a sequential two-step process can greatly improve both accuracy and efficiency. First, we estimate the 3D translation of each object, resolving scale and depth ambiguities inherent to RGB images. These estimates are then used to simplify the subsequent task of determining the 3D orientation, which we achieve through canonical scale template matching. Building on this formulation, we then introduce an active perception strategy that predicts the next best camera viewpoint to capture an RGB image, effectively reducing object pose uncertainty and enhancing pose accuracy. We evaluate our method on the public ROBI dataset as well as on a transparent object dataset that we created. When evaluated using the same camera viewpoints, our multi-view pose estimation significantly outperforms state-of-the-art approaches. Furthermore, by leveraging our next-best-view strategy, our method achieves high object pose accuracy with substantially fewer viewpoints than heuristic-based policies.
Abstract:Different types of intelligent reflecting surfaces (IRS) are exploited for assisting wireless communications. The joint use of passive IRS (PIRS) and active IRS (AIRS) emerges as a promising solution owing to their complementary advantages. They can be integrated into a single hybrid active-passive IRS (HIRS) or deployed in a distributed manner, which poses challenges in determining the IRS element allocation and placement for rate maximization. In this paper, we investigate the capacity of an IRS-aided wireless communication system with both active and passive elements. Specifically, we consider three deployment schemes: 1) base station (BS)-HIRS-user (BHU); 2) BS-AIRS-PIRS-user (BAPU); 3) BS-PIRS-AIRS-user (BPAU). Under the line-of-sight channel model, we formulate a rate maximization problem via a joint optimization of the IRS element allocation and placement. We first derive the optimized number of active and passive elements for BHU, BAPU, and BPAU schemes, respectively. Then, low-complexity HIRS/AIRS placement strategies are provided. To obtain more insights, we characterize the system capacity scaling orders for the three schemes with respect to the large total number of IRS elements, amplification power budget, and BS transmit power. Finally, simulation results are presented to validate our theoretical findings and show the performance difference among the BHU, BAPU, and BPAU schemes with the proposed joint design under various system setups.
Abstract:Exploration in sparse reward environments remains a significant challenge in reinforcement learning, particularly in Contextual Markov Decision Processes (CMDPs), where environments differ across episodes. Existing episodic intrinsic motivation methods for CMDPs primarily rely on count-based approaches, which are ineffective in large state spaces, or on similarity-based methods that lack appropriate metrics for state comparison. To address these shortcomings, we propose Episodic Novelty Through Temporal Distance (ETD), a novel approach that introduces temporal distance as a robust metric for state similarity and intrinsic reward computation. By employing contrastive learning, ETD accurately estimates temporal distances and derives intrinsic rewards based on the novelty of states within the current episode. Extensive experiments on various benchmark tasks demonstrate that ETD significantly outperforms state-of-the-art methods, highlighting its effectiveness in enhancing exploration in sparse reward CMDPs.
Abstract:3D Gaussian Splatting has emerged as a promising technique for high-quality 3D rendering, leading to increasing interest in integrating 3DGS into realism SLAM systems. However, existing methods face challenges such as Gaussian primitives redundancy, forgetting problem during continuous optimization, and difficulty in initializing primitives in monocular case due to lack of depth information. In order to achieve efficient and photorealistic mapping, we propose RP-SLAM, a 3D Gaussian splatting-based vision SLAM method for monocular and RGB-D cameras. RP-SLAM decouples camera poses estimation from Gaussian primitives optimization and consists of three key components. Firstly, we propose an efficient incremental mapping approach to achieve a compact and accurate representation of the scene through adaptive sampling and Gaussian primitives filtering. Secondly, a dynamic window optimization method is proposed to mitigate the forgetting problem and improve map consistency. Finally, for the monocular case, a monocular keyframe initialization method based on sparse point cloud is proposed to improve the initialization accuracy of Gaussian primitives, which provides a geometric basis for subsequent optimization. The results of numerous experiments demonstrate that RP-SLAM achieves state-of-the-art map rendering accuracy while ensuring real-time performance and model compactness.
Abstract:In hybrid transactional and analytical processing (HTAP) systems, users often struggle to understand why query plans from one engine (OLAP or OLTP) perform significantly slower than those from another. Although optimizers provide plan details via the EXPLAIN function, these explanations are frequently too technical for non-experts and offer limited insights into performance differences across engines. To address this, we propose a novel framework that leverages large language models (LLMs) to explain query performance in HTAP systems. Built on Retrieval-Augmented Generation (RAG), our framework constructs a knowledge base that stores historical query executions and expert-curated explanations. To enable efficient retrieval of relevant knowledge, query plans are embedded using a lightweight tree-CNN classifier. This augmentation allows the LLM to generate clear, context-aware explanations of performance differences between engines. Our approach demonstrates the potential of LLMs in hybrid engine systems, paving the way for further advancements in database optimization and user support.
Abstract:Sound event localization and detection (SELD) has seen substantial advancements through learning-based methods. These systems, typically trained from scratch on specific datasets, have shown considerable generalization capabilities. Recently, deep neural networks trained on large-scale datasets have achieved remarkable success in the sound event classification (SEC) field, prompting an open question of whether these advancements can be extended to develop general-purpose SELD models. In this paper, leveraging the power of pre-trained SEC models, we propose pre-trained SELD networks (PSELDNets) on large-scale synthetic datasets. These synthetic datasets, generated by convolving sound events with simulated spatial room impulse responses (SRIRs), contain 1,167 hours of audio clips with an ontology of 170 sound classes. These PSELDNets are transferred to downstream SELD tasks. When we adapt PSELDNets to specific scenarios, particularly in low-resource data cases, we introduce a data-efficient fine-tuning method, AdapterBit. PSELDNets are evaluated on a synthetic-test-set using collected SRIRs from TAU Spatial Room Impulse Response Database (TAU-SRIR DB) and achieve satisfactory performance. We also conduct our experiments to validate the transferability of PSELDNets to three publicly available datasets and our own collected audio recordings. Results demonstrate that PSELDNets surpass state-of-the-art systems across all publicly available datasets. Given the need for direction-of-arrival estimation, SELD generally relies on sufficient multi-channel audio clips. However, incorporating the AdapterBit, PSELDNets show more efficient adaptability to various tasks using minimal multi-channel or even just monophonic audio clips, outperforming the traditional fine-tuning approaches.
Abstract:Ensuring safety is crucial to promote the application of robot manipulators in open workspace. Factors such as sensor errors or unpredictable collisions make the environment full of uncertainties. In this work, we investigate these potential safety challenges on redundant robot manipulators, and propose a task-oriented planning and control framework to achieve multi-layered safety while maintaining efficient task execution. Our approach consists of two main parts: a task-oriented trajectory planner based on multiple-shooting model predictive control method, and a torque controller that allows safe and efficient collision reaction using only proprioceptive data. Through extensive simulations and real-hardware experiments, we demonstrate that the proposed framework can effectively handle uncertain static or dynamic obstacles, and perform disturbance resistance in manipulation tasks when unforeseen contacts occur. All code will be open-sourced to benefit the community.
Abstract:The control barrier function (CBF) has become a fundamental tool in safety-critical systems design since its invention. Typically, the quadratic optimization framework is employed to accommodate CBFs, control Lyapunov functions (CLFs), other constraints and nominal control design. However, the constrained optimization framework involves hyper-parameters to tradeoff different objectives and constraints, which, if not well-tuned beforehand, impact system performance and even lead to infeasibility. In this paper, we propose a hierarchical optimization framework that decomposes the multi-objective optimization problem into nested optimization sub-problems in a safety-first approach. The new framework addresses potential infeasibility on the premise of ensuring safety and performance as much as possible and applies easily in multi-certificate cases. With vivid visualization aids, we systematically analyze the advantages of our proposed method over existing QP-based ones in terms of safety, feasibility and convergence rates. Moreover, two numerical examples are provided that verify our analysis and show the superiority of our proposed method.
Abstract:Hannan Limitation successfully links the directivity characteristics of 2D arrays with the aperture gain limit, providing the radiation efficiency upper limit for large 2D planar antenna arrays. This demonstrates the inevitable radiation efficiency degradation caused by mutual coupling effects between array elements. However, this limitation is derived based on the assumption of infinitely large 2D arrays, which means that it is not an accurate law for small-size arrays. In this paper, we extend this theory and propose an estimation formula for the radiation efficiency upper limit of finite-sized 2D arrays. Furthermore, we analyze a 3D array structure consisting of two parallel 2D arrays. Specifically, we provide evaluation formulas for the mutual coupling strengths for both infinite and finite size arrays and derive the fundamental efficiency limit of 3D arrays. Moreover, based on the established gain limit of antenna arrays with fixed aperture sizes, we derive the achievable gain limit of finite size 3D arrays. Besides the performance analyses, we also investigate the spatial radiation characteristics of the considered 3D array structure, offering a feasible region for 2D phase settings under a given energy attenuation threshold. Through simulations, we demonstrate the effectiveness of our proposed theories and gain advantages of 3D arrays for better spatial coverage under various scenarios.
Abstract:Topology optimization is a structural design methodology widely utilized to address engineering challenges. However, sensitivity-based topology optimization methods struggle to solve optimization problems characterized by strong non-linearity. Leveraging the sensitivity-free nature and high capacity of deep generative models, data-driven topology design (DDTD) methodology is considered an effective solution to this problem. Despite this, the training effectiveness of deep generative models diminishes when input size exceeds a threshold while maintaining high degrees of freedom is crucial for accurately characterizing complex structures. To resolve the conflict between the both, we propose DDTD based on principal component analysis (PCA). Its core idea is to replace the direct training of deep generative models with material distributions by using a principal component score matrix obtained from PCA computation and to obtain the generated material distributions with new features through the restoration process. We apply the proposed PCA-based DDTD to the problem of minimizing the maximum stress in 3D structural mechanics and demonstrate it can effectively address the current challenges faced by DDTD that fail to handle 3D structural design problems. Various experiments are conducted to demonstrate the effectiveness and practicability of the proposed PCA-based DDTD.