Abstract:Due to the continuous emergence of new data, version updates have become an indispensable requirement for Large Language Models (LLMs). The training paradigms for version updates of LLMs include pre-training from scratch (PTFS) and continual pre-training (CPT). Preliminary experiments demonstrate that PTFS achieves better pre-training performance, while CPT has lower training cost. Moreover, their performance and training cost gaps widen progressively with version updates. To investigate the underlying reasons for this phenomenon, we analyze the effect of learning rate adjustments during the two stages of CPT: preparing an initialization checkpoint and continual pre-training based on this checkpoint. We find that a large learning rate in the first stage and a complete learning rate decay process in the second stage are crucial for version updates of LLMs. Hence, we propose a learning rate path switching training paradigm. Our paradigm comprises one main path, where we pre-train a LLM with the maximal learning rate, and multiple branching paths, each of which corresponds to an update of the LLM with newly-added training data. Extensive experiments demonstrate the effectiveness and generalization of our paradigm. Particularly, when training four versions of LLMs, our paradigm reduces the total training cost to 58% compared to PTFS, while maintaining comparable pre-training performance.
Abstract:Multimodal task specification is essential for enhanced robotic performance, where \textit{Cross-modality Alignment} enables the robot to holistically understand complex task instructions. Directly annotating multimodal instructions for model training proves impractical, due to the sparsity of paired multimodal data. In this study, we demonstrate that by leveraging unimodal instructions abundant in real data, we can effectively teach robots to learn multimodal task specifications. First, we endow the robot with strong \textit{Cross-modality Alignment} capabilities, by pretraining a robotic multimodal encoder using extensive out-of-domain data. Then, we employ two Collapse and Corrupt operations to further bridge the remaining modality gap in the learned multimodal representation. This approach projects different modalities of identical task goal as interchangeable representations, thus enabling accurate robotic operations within a well-aligned multimodal latent space. Evaluation across more than 130 tasks and 4000 evaluations on both simulated LIBERO benchmark and real robot platforms showcases the superior capabilities of our proposed framework, demonstrating significant advantage in overcoming data constraints in robotic learning. Website: zh1hao.wang/Robo_MUTUAL
Abstract:Token repetition is a typical form of multi-modal problem in fully non-autoregressive translation (NAT). In this work, we revisit the multi-modal problem in recently proposed NAT models. Our study reveals that these advanced models have introduced other types of information redundancy errors, which cannot be measured by the conventional metric - the continuous repetition ratio. By manually annotating the NAT outputs, we identify two types of information redundancy errors that correspond well to lexical and reordering multi-modality problems. Since human annotation is time-consuming and labor-intensive, we propose automatic metrics to evaluate the two types of redundant errors. Our metrics allow future studies to evaluate new methods and gain a more comprehensive understanding of their effectiveness.
Abstract:Foundation models, i.e., very large deep learning models, have demonstrated impressive performances in various language and vision tasks that are otherwise difficult to reach using smaller-size models. The major success of GPT-type of language models is particularly exciting and raises expectations on the potential of foundation models in other domains including satellite remote sensing. In this context, great efforts have been made to build foundation models to test their capabilities in broader applications, and examples include Prithvi by NASA-IBM, Segment-Anything-Model, ViT, etc. This leads to an important question: Are foundation models always a suitable choice for different remote sensing tasks, and when or when not? This work aims to enhance the understanding of the status and suitability of foundation models for pixel-level classification using multispectral imagery at moderate resolution, through comparisons with traditional machine learning (ML) and regular-size deep learning models. Interestingly, the results reveal that in many scenarios traditional ML models still have similar or better performance compared to foundation models, especially for tasks where texture is less useful for classification. On the other hand, deep learning models did show more promising results for tasks where labels partially depend on texture (e.g., burn scar), while the difference in performance between foundation models and deep learning models is not obvious. The results conform with our analysis: The suitability of foundation models depend on the alignment between the self-supervised learning tasks and the real downstream tasks, and the typical masked autoencoder paradigm is not necessarily suitable for many remote sensing problems.
Abstract:Human motion prediction is consisting in forecasting future body poses from historically observed sequences. It is a longstanding challenge due to motion's complex dynamics and uncertainty. Existing methods focus on building up complicated neural networks to model the motion dynamics. The predicted results are required to be strictly similar to the training samples with L2 loss in current training pipeline. However, little attention has been paid to the uncertainty property which is crucial to the prediction task. We argue that the recorded motion in training data could be an observation of possible future, rather than a predetermined result. In addition, existing works calculate the predicted error on each future frame equally during training, while recent work indicated that different frames could play different roles. In this work, a novel computationally efficient encoder-decoder model with uncertainty consideration is proposed, which could learn proper characteristics for future frames by a dynamic function. Experimental results on benchmark datasets demonstrate that our uncertainty consideration approach has obvious advantages both in quantity and quality. Moreover, the proposed method could produce motion sequences with much better quality that avoids the intractable shaking artefacts. We believe our work could provide a novel perspective to consider the uncertainty quality for the general motion prediction task and encourage the studies in this field. The code will be available in https://github.com/Motionpre/Adaptive-Salient-Loss-SAGGB.
Abstract:Fairness-awareness has emerged as an essential building block for the responsible use of artificial intelligence in real applications. In many cases, inequity in performance is due to the change in distribution over different regions. While techniques have been developed to improve the transferability of fairness, a solution to the problem is not always feasible with no samples from the new regions, which is a bottleneck for pure data-driven attempts. Fortunately, physics-based mechanistic models have been studied for many problems with major social impacts. We propose SimFair, a physics-guided fairness-aware learning framework, which bridges the data limitation by integrating physical-rule-based simulation and inverse modeling into the training design. Using temperature prediction as an example, we demonstrate the effectiveness of the proposed SimFair in fairness preservation.
Abstract:Existing satellite remote sensing change detection (CD) methods often crop original large-scale bi-temporal image pairs into small patch pairs and then use pixel-level CD methods to fairly process all the patch pairs. However, due to the sparsity of change in large-scale satellite remote sensing images, existing pixel-level CD methods suffer from a waste of computational cost and memory resources on lots of unchanged areas, which reduces the processing efficiency of on-board platform with extremely limited computation and memory resources. To address this issue, we propose a lightweight patch-level CD network (LPCDNet) to rapidly remove lots of unchanged patch pairs in large-scale bi-temporal image pairs. This is helpful to accelerate the subsequent pixel-level CD processing stage and reduce its memory costs. In our LPCDNet, a sensitivity-guided channel pruning method is proposed to remove unimportant channels and construct the lightweight backbone network on basis of ResNet18 network. Then, the multi-layer feature compression (MLFC) module is designed to compress and fuse the multi-level feature information of bi-temporal image patch. The output of MLFC module is fed into the fully-connected decision network to generate the predicted binary label. Finally, a weighted cross-entropy loss is utilized in the training process of network to tackle the change/unchange class imbalance problem. Experiments on two CD datasets demonstrate that our LPCDNet achieves more than 1000 frames per second on an edge computation platform, i.e., NVIDIA Jetson AGX Orin, which is more than 3 times that of the existing methods without noticeable CD performance loss. In addition, our method reduces more than 60% memory costs of the subsequent pixel-level CD processing stage.
Abstract:Multi-object tracking (MOT) has important applications in monitoring, logistics, and other fields. This paper develops a real-time multi-object tracking and prediction system in rugged environments. A 3D object detection algorithm based on Lidar-camera fusion is designed to detect the target objects. Based on the Hungarian algorithm, this paper designs a 3D multi-object tracking algorithm with an adaptive threshold to realize the stable matching and tracking of the objects. We combine Memory Augmented Neural Networks (MANN) and Kalman filter to achieve 3D trajectory prediction on rugged terrains. Besides, we realize a new dynamic SLAM by using the results of multi-object tracking to remove dynamic points for better SLAM performance and static map. To verify the effectiveness of the proposed multi-object tracking and prediction system, several simulations and physical experiments are conducted. The results show that the proposed system can track dynamic objects and provide future trajectory and a more clean static map in real-time.
Abstract:Recently, the text-to-table generation task has attracted increasing attention due to its wide applications. In this aspect, the dominant model formalizes this task as a sequence-to-sequence generation task and serializes each table into a token sequence during training by concatenating all rows in a top-down order. However, it suffers from two serious defects: 1) the predefined order introduces a wrong bias during training, which highly penalizes shifts in the order between rows; 2) the error propagation problem becomes serious when the model outputs a long token sequence. In this paper, we first conduct a preliminary study to demonstrate the generation of most rows is order-insensitive. Furthermore, we propose a novel sequence-to-sequence&set text-to-table generation model. Specifically, in addition to a text encoder encoding the input text, our model is equipped with a table header generator to first output a table header, i.e., the first row of the table, in the manner of sequence generation. Then we use a table body generator with learnable row embeddings and column embeddings to generate a set of table body rows in parallel. Particularly, to deal with the issue that there is no correspondence between each generated table body row and target during training, we propose a target assignment strategy based on the bipartite matching between the first cells of generated table body rows and targets. Experiment results show that our model significantly surpasses the baselines, achieving state-of-the-art performance on commonly-used datasets.
Abstract:In real-world systems, scaling has been critical for improving the translation quality in autoregressive translation (AT), which however has not been well studied for non-autoregressive translation (NAT). In this work, we bridge the gap by systematically studying the impact of scaling on NAT behaviors. Extensive experiments on six WMT benchmarks over two advanced NAT models show that scaling can alleviate the commonly-cited weaknesses of NAT models, resulting in better translation performance. To reduce the side-effect of scaling on decoding speed, we empirically investigate the impact of NAT encoder and decoder on the translation performance. Experimental results on the large-scale WMT20 En-De show that the asymmetric architecture (e.g. bigger encoder and smaller decoder) can achieve comparable performance with the scaling model, while maintaining the superiority of decoding speed with standard NAT models. To this end, we establish a new benchmark by validating scaled NAT models on the scaled dataset, which can be regarded as a strong baseline for future works. We release code, models and system outputs at https://github.com/DeepLearnXMU/Scaling4NAT.