College of Electrical and Information Engineering, Hunan University
Abstract:This paper investigates a wireless powered mobile edge computing (WP-MEC) network with multiple hybrid access points (HAPs) in a dynamic environment, where wireless devices (WDs) harvest energy from radio frequency (RF) signals of HAPs, and then compute their computation data locally (i.e., local computing mode) or offload it to the chosen HAPs (i.e., edge computing mode). In order to pursue a green computing design, we formulate an optimization problem that minimizes the long-term energy provision of the WP-MEC network subject to the energy, computing delay and computation data demand constraints. The transmit power of HAPs, the duration of the wireless power transfer (WPT) phase, the offloading decisions of WDs, the time allocation for offloading and the CPU frequency for local computing are jointly optimized adapting to the time-varying generated computation data and wireless channels of WDs. To efficiently address the formulated non-convex mixed integer programming (MIP) problem in a distributed manner, we propose a Two-stage Multi-Agent deep reinforcement learning-based Distributed computation Offloading (TMADO) framework, which consists of a high-level agent and multiple low-level agents. The high-level agent residing in all HAPs optimizes the transmit power of HAPs and the duration of the WPT phase, while each low-level agent residing in each WD optimizes its offloading decision, time allocation for offloading and CPU frequency for local computing. Simulation results show the superiority of the proposed TMADO framework in terms of the energy provision minimization.
Abstract:Air pollution significantly threatens human health and ecosystems, necessitating effective air quality prediction to inform public policy. Traditional approaches are generally categorized into physics-based and data-driven models. Physics-based models usually struggle with high computational demands and closed-system assumptions, while data-driven models may overlook essential physical dynamics, confusing the capturing of spatiotemporal correlations. Although some physics-informed approaches combine the strengths of both models, they often face a mismatch between explicit physical equations and implicit learned representations. To address these challenges, we propose Air-DualODE, a novel physics-informed approach that integrates dual branches of Neural ODEs for air quality prediction. The first branch applies open-system physical equations to capture spatiotemporal dependencies for learning physics dynamics, while the second branch identifies the dependencies not addressed by the first in a fully data-driven way. These dual representations are temporally aligned and fused to enhance prediction accuracy. Our experimental results demonstrate that Air-DualODE achieves state-of-the-art performance in predicting pollutant concentrations across various spatial scales, thereby offering a promising solution for real-world air quality challenges.
Abstract:Due to the global trend towards urbanization, people increasingly move to and live in cities that then continue to grow. Traffic forecasting plays an important role in the intelligent transportation systems of cities as well as in spatio-temporal data mining. State-of-the-art forecasting is achieved by deep-learning approaches due to their ability to contend with complex spatio-temporal dynamics. However, existing methods assume the input is fixed-topology road networks and static traffic time series. These assumptions fail to align with urbanization, where time series are collected continuously and road networks evolve over time. In such settings, deep-learning models require frequent re-initialization and re-training, imposing high computational costs. To enable much more efficient training without jeopardizing model accuracy, we propose the Topological Evolution-aware Framework (TEAM) for traffic forecasting that incorporates convolution and attention. This combination of mechanisms enables better adaptation to newly collected time series, while being able to maintain learned knowledge from old time series. TEAM features a continual learning module based on the Wasserstein metric that acts as a buffer that can identify the most stable and the most changing network nodes. Then, only data related to stable nodes is employed for re-training when consolidating a model. Further, only data of new nodes and their adjacent nodes as well as data pertaining to changing nodes are used to re-train the model. Empirical studies with two real-world traffic datasets offer evidence that TEAM is capable of much lower re-training costs than existing methods are, without jeopardizing forecasting accuracy.
Abstract:Time series anomaly prediction plays an essential role in many real-world scenarios, such as environmental prevention and prompt maintenance of cyber-physical systems. However, existing time series anomaly prediction methods mainly require supervised training with plenty of manually labeled data, which are difficult to obtain in practice. Besides, unseen anomalies can occur during inference, which could differ from the labeled training data and make these models fail to predict such new anomalies. In this paper, we study a novel problem of unsupervised time series anomaly prediction. We provide a theoretical analysis and propose Importance-based Generative Contrastive Learning (IGCL) to address the aforementioned problems. IGCL distinguishes between normal and anomaly precursors, which are generated by our anomaly precursor pattern generation module. To address the efficiency issues caused by the potential complex anomaly precursor combinations, we propose a memory bank with importance-based scores to adaptively store representative anomaly precursors and generate more complicated anomaly precursors. Extensive experiments on seven benchmark datasets show our method outperforms state-of-the-art baselines on unsupervised time series anomaly prediction problems.
Abstract:Many methods have been proposed for unsupervised time series anomaly detection. Despite some progress, research on predicting future anomalies is still relatively scarce. Predicting anomalies is particularly challenging due to the diverse reaction time and the lack of labeled data. To address these challenges, we propose MultiRC to integrate reconstructive and contrastive learning for joint learning of anomaly prediction and detection, with multi-scale structure and adaptive dominant period mask to deal with the diverse reaction time. MultiRC also generates negative samples to provide essential training momentum for the anomaly prediction tasks and prevent model degradation. We evaluate seven benchmark datasets from different fields. For both anomaly prediction and detection tasks, MultiRC outperforms existing state-of-the-art methods.
Abstract:Probabilistic time series imputation has been widely applied in real-world scenarios due to its ability to estimate uncertainty of imputation results. Meanwhile, denoising diffusion probabilistic models (DDPMs) have achieved great success in probabilistic time series imputation tasks with its power to model complex distributions. However, current DDPM-based probabilistic time series imputation methodologies are confronted with two types of challenges: 1)~\textit{~The backbone modules of the denoising parts are not capable of achieving sequence modeling with low time complexity.} 2)~\textit{The architecture of denoising modules can not handle the inter-variable and bidirectional dependencies in the time series imputation problem effectively.} To address the first challenge, we integrate the computational efficient state space model, namely Mamba, as the backbone denosing module for DDPMs. To tackle the second challenge, we carefully devise several SSM-based blocks for bidirectional modeling and inter-variable relation understanding. Experimental results demonstrate that our approach can achieve state-of-the-art time series imputation results on multiple datasets, different missing scenarios and missing ratios.
Abstract:Anomaly detection in multivariate time series is challenging as heterogeneous subsequence anomalies may occur. Reconstruction-based methods, which focus on learning nomral patterns in the frequency domain to detect diverse abnormal subsequences, achieve promising resutls, while still falling short on capturing fine-grained frequency characteristics and channel correlations. To contend with the limitations, we introduce CATCH, a framework based on frequency patching. We propose to patchify the frequency domain into frequency bands, which enhances its ability to capture fine-grained frequency characteristics. To perceive appropriate channel correlations, we propose a Channel Fusion Module (CFM), which features a patch-wise mask generator and a masked-attention mechanism. Driven by a bi-level multi-objective optimization algorithm, the CFM is encouraged to iteratively discover appropriate patch-wise channel correlations, and to cluster relevant channels while isolating adverse effects from irrelevant channels. Extensive experiments on 9 real-world datasets and 12 synthetic datasets demonstrate that CATCH achieves state-of-the-art performance.
Abstract:Time Series Forecasting (TSF) is key functionality in numerous fields, including in finance, weather services, and energy management. While TSF methods are emerging these days, many of them require domain-specific data collection and model training and struggle with poor generalization performance on new domains. Foundation models aim to overcome this limitation. Pre-trained on large-scale language or time series data, they exhibit promising inferencing capabilities in new or unseen data. This has spurred a surge in new TSF foundation models. We propose a new benchmark, FoundTS, to enable thorough and fair evaluation and comparison of such models. FoundTS covers a variety of TSF foundation models, including those based on large language models and those pretrained on time series. Next, FoundTS supports different forecasting strategies, including zero-shot, few-shot, and full-shot, thereby facilitating more thorough evaluations. Finally, FoundTS offers a pipeline that standardizes evaluation processes such as dataset splitting, loading, normalization, and few-shot sampling, thereby facilitating fair evaluations. Building on this, we report on an extensive evaluation of TSF foundation models on a broad range of datasets from diverse domains and with different statistical characteristics. Specifically, we identify pros and cons and inherent limitations of existing foundation models, and we identify directions for future model design. We make our code and datasets available at https://anonymous.4open.science/r/FoundTS-C2B0.
Abstract:Convolutional Neural Networks (CNNs) are important for many machine learning tasks. They are built with different types of layers: convolutional layers that detect features, dropout layers that help to avoid over-reliance on any single neuron, and residual layers that allow the reuse of features. However, CNNs lack a dynamic feature retention mechanism similar to the human brain's memory, limiting their ability to use learned information in new contexts. To bridge this gap, we introduce the "Squeeze-and-Remember" (SR) block, a novel architectural unit that gives CNNs dynamic memory-like functionalities. The SR block selectively memorizes important features during training, and then adaptively re-applies these features during inference. This improves the network's ability to make contextually informed predictions. Empirical results on ImageNet and Cityscapes datasets demonstrate the SR block's efficacy: integration into ResNet50 improved top-1 validation accuracy on ImageNet by 0.52% over dropout2d alone, and its application in DeepLab v3 increased mean Intersection over Union in Cityscapes by 0.20%. These improvements are achieved with minimal computational overhead. This show the SR block's potential to enhance the capabilities of CNNs in image processing tasks.
Abstract:Regularization techniques help prevent overfitting and therefore improve the ability of convolutional neural networks (CNNs) to generalize. One reason for overfitting is the complex co-adaptations among different parts of the network, which make the CNN dependent on their joint response rather than encouraging each part to learn a useful feature representation independently. Frequency domain manipulation is a powerful strategy for modifying data that has temporal and spatial coherence by utilizing frequency decomposition. This work introduces Spectral Wavelet Dropout (SWD), a novel regularization method that includes two variants: 1D-SWD and 2D-SWD. These variants improve CNN generalization by randomly dropping detailed frequency bands in the discrete wavelet decomposition of feature maps. Our approach distinguishes itself from the pre-existing Spectral "Fourier" Dropout (2D-SFD), which eliminates coefficients in the Fourier domain. Notably, SWD requires only a single hyperparameter, unlike the two required by SFD. We also extend the literature by implementing a one-dimensional version of Spectral "Fourier" Dropout (1D-SFD), setting the stage for a comprehensive comparison. Our evaluation shows that both 1D and 2D SWD variants have competitive performance on CIFAR-10/100 benchmarks relative to both 1D-SFD and 2D-SFD. Specifically, 1D-SWD has a significantly lower computational complexity compared to 1D/2D-SFD. In the Pascal VOC Object Detection benchmark, SWD variants surpass 1D-SFD and 2D-SFD in performance and demonstrate lower computational complexity during training.