Renmin University of China
Abstract:This report focuses on spatial data intelligent large models, delving into the principles, methods, and cutting-edge applications of these models. It provides an in-depth discussion on the definition, development history, current status, and trends of spatial data intelligent large models, as well as the challenges they face. The report systematically elucidates the key technologies of spatial data intelligent large models and their applications in urban environments, aerospace remote sensing, geography, transportation, and other scenarios. Additionally, it summarizes the latest application cases of spatial data intelligent large models in themes such as urban development, multimodal systems, remote sensing, smart transportation, and resource environments. Finally, the report concludes with an overview and outlook on the development prospects of spatial data intelligent large models.
Abstract:With the development of astronomical facilities, large-scale time series data observed by these facilities is being collected. Analyzing anomalies in these astronomical observations is crucial for uncovering potential celestial events and physical phenomena, thus advancing the scientific research process. However, existing time series anomaly detection methods fall short in tackling the unique characteristics of astronomical observations where each star is inherently independent but interfered by random concurrent noise, resulting in a high rate of false alarms. To overcome the challenges, we propose AERO, a novel two-stage framework tailored for unsupervised anomaly detection in astronomical observations. In the first stage, we employ a Transformer-based encoder-decoder architecture to learn the normal temporal patterns on each variate (i.e., star) in alignment with the characteristic of variate independence. In the second stage, we enhance the graph neural network with a window-wise graph structure learning to tackle the occurrence of concurrent noise characterized by spatial and temporal randomness. In this way, AERO is not only capable of distinguishing normal temporal patterns from potential anomalies but also effectively differentiating concurrent noise, thus decreasing the number of false alarms. We conducted extensive experiments on three synthetic datasets and three real-world datasets. The results demonstrate that AERO outperforms the compared baselines. Notably, compared to the state-of-the-art model, AERO improves the F1-score by up to 8.76% and 2.63% on synthetic and real-world datasets respectively.
Abstract:Federated learning enhanced by differential privacy has emerged as a popular approach to better safeguard the privacy of client-side data by protecting clients' contributions during the training process. Existing solutions typically assume a uniform privacy budget for all records and provide one-size-fits-all solutions that may not be adequate to meet each record's privacy requirement. In this paper, we explore the uncharted territory of cross-silo FL with record-level personalized differential privacy. We devise a novel framework named rPDP-FL, employing a two-stage hybrid sampling scheme with both client-level sampling and non-uniform record-level sampling to accommodate varying privacy requirements. A critical and non-trivial problem is to select the ideal per-record sampling probability q given the personalized privacy budget {\epsilon}. We introduce a versatile solution named Simulation-CurveFitting, allowing us to uncover a significant insight into the nonlinear correlation between q and {\epsilon} and derive an elegant mathematical model to tackle the problem. Our evaluation demonstrates that our solution can provide significant performance gains over the baselines that do not consider personalized privacy preservation.