Abstract:Knowledge distillation (KD) is a machine learning framework that transfers knowledge from a teacher model to a student model. The vanilla KD proposed by Hinton et al. has been the dominant approach in logit-based distillation and demonstrates compelling performance. However, it only performs sample-wise probability alignment between teacher and student's predictions, lacking an mechanism for class-wise comparison. Besides, vanilla KD imposes no structural constraint on the probability space. In this work, we propose a simple yet effective methodology, bilateral contrastive knowledge distillation (BicKD). This approach introduces a novel bilateral contrastive loss, which intensifies the orthogonality among different class generalization spaces while preserving consistency within the same class. The bilateral formulation enables explicit comparison of both sample-wise and class-wise prediction patterns between teacher and student. By emphasizing probabilistic orthogonality, BicKD further regularizes the geometric structure of the predictive distribution. Extensive experiments show that our BicKD method enhances knowledge transfer, and consistently outperforms state-of-the-art knowledge distillation techniques across various model architectures and benchmarks.
Abstract:Machine Unlearning (MU) aims at removing the influence of specific data from a pretrained model while preserving performance on the remaining data. In this work, a novel perspective for MU is presented upon low-dimensional feature subspaces, which gives rise to the potentials of separating the remaining and forgetting data herein. This separability motivates our LOFT, a method that proceeds unlearning in a LOw-dimensional FeaTure subspace from the pretrained model skithrough principal projections, which are optimized to maximally capture the information of the remaining data and meanwhile diminish that of the forgetting data. In training, LOFT simply optimizes a small-size projection matrix flexibly plugged into the pretrained model, and only requires one-shot feature fetching from the pretrained backbone instead of repetitively accessing the raw data. Hence, LOFT mitigates two critical issues in mainstream MU methods, i.e., the privacy leakage risk from massive data reload and the inefficiency of updates to the entire pretrained model. Extensive experiments validate the significantly lower computational overhead and superior unlearning performance of LOFT across diverse models, datasets, tasks, and applications. Code is anonymously available at https://anonymous.4open.science/r/4352/.
Abstract:Concept erasure aims to suppress sensitive content in diffusion models, but recent studies show that erased concepts can still be reawakened, revealing vulnerabilities in erasure methods. Existing reawakening methods mainly rely on prompt-level optimization to manipulate sampling trajectories, neglecting other generative factors, which limits a comprehensive understanding of the underlying dynamics. In this paper, we model the generation process as an implicit function to enable a comprehensive theoretical analysis of multiple factors, including text conditions, model parameters, and latent states. We theoretically show that perturbing each factor can reawaken erased concepts. Building on this insight, we propose a novel concept reawakening method: Latent space Unblocking for concept REawakening (LURE), which reawakens erased concepts by reconstructing the latent space and guiding the sampling trajectory. Specifically, our semantic re-binding mechanism reconstructs the latent space by aligning denoising predictions with target distributions to reestablish severed text-visual associations. However, in multi-concept scenarios, naive reconstruction can cause gradient conflicts and feature entanglement. To address this, we introduce Gradient Field Orthogonalization, which enforces feature orthogonality to prevent mutual interference. Additionally, our Latent Semantic Identification-Guided Sampling (LSIS) ensures stability of the reawakening process via posterior density verification. Extensive experiments demonstrate that LURE enables simultaneous, high-fidelity reawakening of multiple erased concepts across diverse erasure tasks and methods.
Abstract:Visual reinforcement learning has achieved remarkable progress in visual control and robotics, but its vulnerability to adversarial perturbations remains underexplored. Most existing black-box attacks focus on vector-based or discrete-action RL, and their effectiveness on image-based continuous control is limited by the large action space and excessive environment queries. We propose SEBA, a sample-efficient framework for black-box adversarial attacks on visual RL agents. SEBA integrates a shadow Q model that estimates cumulative rewards under adversarial conditions, a generative adversarial network that produces visually imperceptible perturbations, and a world model that simulates environment dynamics to reduce real-world queries. Through a two-stage iterative training procedure that alternates between learning the shadow model and refining the generator, SEBA achieves strong attack performance while maintaining efficiency. Experiments on MuJoCo and Atari benchmarks show that SEBA significantly reduces cumulative rewards, preserves visual fidelity, and greatly decreases environment interactions compared to prior black-box and white-box methods.
Abstract:Federated learning enhanced by differential privacy has emerged as a popular approach to better safeguard the privacy of client-side data by protecting clients' contributions during the training process. Existing solutions typically assume a uniform privacy budget for all records and provide one-size-fits-all solutions that may not be adequate to meet each record's privacy requirement. In this paper, we explore the uncharted territory of cross-silo FL with record-level personalized differential privacy. We devise a novel framework named rPDP-FL, employing a two-stage hybrid sampling scheme with both client-level sampling and non-uniform record-level sampling to accommodate varying privacy requirements. A critical and non-trivial problem is to select the ideal per-record sampling probability q given the personalized privacy budget {\epsilon}. We introduce a versatile solution named Simulation-CurveFitting, allowing us to uncover a significant insight into the nonlinear correlation between q and {\epsilon} and derive an elegant mathematical model to tackle the problem. Our evaluation demonstrates that our solution can provide significant performance gains over the baselines that do not consider personalized privacy preservation.