Abstract:Blind face restoration has made great progress in producing high-quality and lifelike images. Yet it remains challenging to preserve the ID information especially when the degradation is heavy. Current reference-guided face restoration approaches either require face alignment or personalized test-tuning, which are unfaithful or time-consuming. In this paper, we propose a tuning-free method named RestorerID that incorporates ID preservation during face restoration. RestorerID is a diffusion model-based method that restores low-quality images with varying levels of degradation by using a single reference image. To achieve this, we propose a unified framework to combine the ID injection with the base blind face restoration model. In addition, we design a novel Face ID Rebalancing Adapter (FIR-Adapter) to tackle the problems of content unconsistency and contours misalignment that are caused by information conflicts between the low-quality input and reference image. Furthermore, by employing an Adaptive ID-Scale Adjusting strategy, RestorerID can produce superior restored images across various levels of degradation. Experimental results on the Celeb-Ref dataset and real-world scenarios demonstrate that RestorerID effectively delivers high-quality face restoration with ID preservation, achieving a superior performance compared to the test-tuning approaches and other reference-guided ones. The code of RestorerID is available at \url{https://github.com/YingJiacheng/RestorerID}.
Abstract:Multi-task-learning(MTL) is a multi-target optimization task. Neural networks try to realize each target using a shared interpretative space within MTL. However, as the scale of datasets expands and the complexity of tasks increases, knowledge sharing becomes increasingly challenging. In this paper, we first re-examine previous cross-attention MTL methods from the perspective of noise. We theoretically analyze this issue and identify it as a flaw in the cross-attention mechanism. To address this issue, we propose an information bottleneck knowledge extraction module (KEM). This module aims to reduce inter-task interference by constraining the flow of information, thereby reducing computational complexity. Furthermore, we have employed neural collapse to stabilize the knowledge-selection process. That is, before input to KEM, we projected the features into ETF space. This mapping makes our method more robust. We implemented and conducted comparative experiments with this method on multiple datasets. The results demonstrate that our approach significantly outperforms existing methods in multi-task learning.
Abstract:Large Language Models (LLMs) have long held sway in the realms of artificial intelligence research. Numerous efficient techniques, including weight pruning, quantization, and distillation, have been embraced to compress LLMs, targeting memory reduction and inference acceleration, which underscore the redundancy in LLMs. However, most model compression techniques concentrate on weight optimization, overlooking the exploration of optimal architectures. Besides, traditional architecture search methods, limited by the elevated complexity with extensive parameters, struggle to demonstrate their effectiveness on LLMs. In this paper, we propose a training-free architecture search framework to identify optimal subnets that preserve the fundamental strengths of the original LLMs while achieving inference acceleration. Furthermore, after generating subnets that inherit specific weights from the original LLMs, we introduce a reformation algorithm that utilizes the omitted weights to rectify the inherited weights with a small amount of calibration data. Compared with SOTA training-free structured pruning works that can generate smaller networks, our method demonstrates superior performance across standard benchmarks. Furthermore, our generated subnets can directly reduce the usage of GPU memory and achieve inference acceleration.
Abstract:Generative Flow Networks (GFlowNets) aim to generate diverse trajectories from a distribution in which the final states of the trajectories are proportional to the reward, serving as a powerful alternative to reinforcement learning for exploratory control tasks. However, the individual-flow matching constraint in GFlowNets limits their applications for multi-agent systems, especially continuous joint-control problems. In this paper, we propose a novel Multi-Agent generative Continuous Flow Networks (MACFN) method to enable multiple agents to perform cooperative exploration for various compositional continuous objects. Technically, MACFN trains decentralized individual-flow-based policies in a centralized global-flow-based matching fashion. During centralized training, MACFN introduces a continuous flow decomposition network to deduce the flow contributions of each agent in the presence of only global rewards. Then agents can deliver actions solely based on their assigned local flow in a decentralized way, forming a joint policy distribution proportional to the rewards. To guarantee the expressiveness of continuous flow decomposition, we theoretically derive a consistency condition on the decomposition network. Experimental results demonstrate that the proposed method yields results superior to the state-of-the-art counterparts and better exploration capability. Our code is available at https://github.com/isluoshuang/MACFN.
Abstract:Prompt learning represents a promising method for adapting pre-trained visual-language models (VLMs) to various downstream tasks by learning a set of text embeddings. One challenge inherent to these methods is the poor generalization performance due to the invalidity of the learned text embeddings for unseen tasks. A straightforward approach to bridge this gap is to freeze the text embeddings in prompts, which results in a lack of capacity to adapt VLMs for downstream tasks. To address this dilemma, we proposeto introduce an External Layer (EnLa) of text branch and learnable visual embeddings of the visual branch for adapting VLMs to downstream tasks. The learnable external layer is built upon valid embeddings of pre-trained CLIP. This design considers the balance of learning capabilities between the two branches. To align the textual and visual features, we propose a novel two-pronged approach: i) we introduce the optimal transport as the discrepancy metric to align the vision and text modalities, and ii) we introducea novel strengthening feature to enhance the interaction between these two modalities. Extensive experiments show that our method performs favorably well on 4 types of representative tasks across 11 datasets compared to the existing prompt learning methods.
Abstract:Generative artificial intelligence (GenAI) has made significant progress in understanding world knowledge and generating content from human languages across various modalities, like text-to-text large language models, text-to-image stable diffusion, and text-to-video Sora. While in this paper, we investigate the capability of GenAI for text-to-model generation, to see whether GenAI can comprehend hyper-level knowledge embedded within AI itself parameters. Specifically, we study a practical scenario termed train-once-for-all personalization, aiming to generate personalized models for diverse end-users and tasks using text prompts. Inspired by the recent emergence of neural network diffusion, we present Tina, a text-conditioned neural network diffusion for train-once-for-all personalization. Tina leverages a diffusion transformer model conditioned on task descriptions embedded using a CLIP model. Despite the astronomical number of potential personalized tasks (e.g., $1.73\times10^{13}$), by our design, Tina demonstrates remarkable in-distribution and out-of-distribution generalization even trained on small datasets ($\sim 1000$). We further verify whether and how \Tina understands world knowledge by analyzing its capabilities under zero-shot/few-shot image prompts, different numbers of personalized classes, prompts of natural language descriptions, and predicting unseen entities.
Abstract:Data trading is increasingly gaining attention. However, the inherent replicability and privacy concerns of data make it challenging to directly apply traditional trading theories to data markets. This paper compares data trading markets with traditional ones, focusing particularly on how the replicability and privacy of data impact data markets. We discuss how data's replicability fundamentally alters the concept of opportunity cost in traditional microeconomics within the context of data markets. Additionally, we explore how to leverage this change to maximize benefits without compromising data privacy. This paper outlines the constraints for data circulation within the privacy domain chain and presents a model that maximizes data's value under these constraints. Specific application scenarios are provided, and experiments demonstrate the solvability of this model.
Abstract:Large language models (LLMs) have become crucial for many generative downstream tasks, leading to an inevitable trend and significant challenge to deploy them efficiently on resource-constrained devices. Structured pruning is a widely used method to address this challenge. However, when dealing with the complex structure of the multiple decoder layers, general methods often employ common estimation approaches for pruning. These approaches lead to a decline in accuracy for specific downstream tasks. In this paper, we introduce a simple yet efficient method that adaptively models the importance of each substructure. Meanwhile, it can adaptively fuse coarse-grained and finegrained estimations based on the results from complex and multilayer structures. All aspects of our design seamlessly integrate into the endto-end pruning framework. Our experimental results, compared with state-of-the-art methods on mainstream datasets, demonstrate average accuracy improvements of 1.1%, 1.02%, 2.0%, and 1.2% for LLaMa-7B,Vicuna-7B, Baichuan-7B, and Bloom-7b1, respectively.
Abstract:With the development of astronomical facilities, large-scale time series data observed by these facilities is being collected. Analyzing anomalies in these astronomical observations is crucial for uncovering potential celestial events and physical phenomena, thus advancing the scientific research process. However, existing time series anomaly detection methods fall short in tackling the unique characteristics of astronomical observations where each star is inherently independent but interfered by random concurrent noise, resulting in a high rate of false alarms. To overcome the challenges, we propose AERO, a novel two-stage framework tailored for unsupervised anomaly detection in astronomical observations. In the first stage, we employ a Transformer-based encoder-decoder architecture to learn the normal temporal patterns on each variate (i.e., star) in alignment with the characteristic of variate independence. In the second stage, we enhance the graph neural network with a window-wise graph structure learning to tackle the occurrence of concurrent noise characterized by spatial and temporal randomness. In this way, AERO is not only capable of distinguishing normal temporal patterns from potential anomalies but also effectively differentiating concurrent noise, thus decreasing the number of false alarms. We conducted extensive experiments on three synthetic datasets and three real-world datasets. The results demonstrate that AERO outperforms the compared baselines. Notably, compared to the state-of-the-art model, AERO improves the F1-score by up to 8.76% and 2.63% on synthetic and real-world datasets respectively.
Abstract:Deep neural networks often severely forget previously learned knowledge when learning new knowledge. Various continual learning (CL) methods have been proposed to handle such a catastrophic forgetting issue from different perspectives and achieved substantial improvements. In this paper, a novel two-branch continual learning framework is proposed to further enhance most existing CL methods. Specifically, the main branch can be any existing CL model and the newly introduced side branch is a lightweight convolutional network. The output of each main branch block is modulated by the output of the corresponding side branch block. Such a simple two-branch model can then be easily implemented and learned with the vanilla optimization setting without whistles and bells. Extensive experiments with various settings on multiple image datasets show that the proposed framework yields consistent improvements over state-of-the-art methods.