Abstract:Blind face restoration has made great progress in producing high-quality and lifelike images. Yet it remains challenging to preserve the ID information especially when the degradation is heavy. Current reference-guided face restoration approaches either require face alignment or personalized test-tuning, which are unfaithful or time-consuming. In this paper, we propose a tuning-free method named RestorerID that incorporates ID preservation during face restoration. RestorerID is a diffusion model-based method that restores low-quality images with varying levels of degradation by using a single reference image. To achieve this, we propose a unified framework to combine the ID injection with the base blind face restoration model. In addition, we design a novel Face ID Rebalancing Adapter (FIR-Adapter) to tackle the problems of content unconsistency and contours misalignment that are caused by information conflicts between the low-quality input and reference image. Furthermore, by employing an Adaptive ID-Scale Adjusting strategy, RestorerID can produce superior restored images across various levels of degradation. Experimental results on the Celeb-Ref dataset and real-world scenarios demonstrate that RestorerID effectively delivers high-quality face restoration with ID preservation, achieving a superior performance compared to the test-tuning approaches and other reference-guided ones. The code of RestorerID is available at \url{https://github.com/YingJiacheng/RestorerID}.
Abstract:Single-frame infrared small target (SIRST) detection poses a significant challenge due to the requirement to discern minute targets amidst complex infrared background clutter. Recently, deep learning approaches have shown promising results in this domain. However, these methods heavily rely on extensive manual annotations, which are particularly cumbersome and resource-intensive for infrared small targets owing to their minute sizes. To address this limitation, we introduce a Hybrid Mask Generation (HMG) approach that recovers high-quality masks for each target from only a single-point label for network training. Specifically, our HMG approach consists of a handcrafted Points-to-Mask Generation strategy coupled with a pseudo mask updating strategy to recover and refine pseudo masks from point labels. The Points-to-Mask Generation strategy divides two distinct stages: Points-to-Box conversion, where individual point labels are transformed into bounding boxes, and subsequently, Box-to-Mask prediction, where these bounding boxes are elaborated into precise masks. The mask updating strategy integrates the complementary strengths of handcrafted and deep-learning algorithms to iteratively refine the initial pseudo masks. Experimental results across three datasets demonstrate that our method outperforms the existing methods for infrared small target detection with single-point supervision.
Abstract:Few-shot learning (FSL) aims to recognize new concepts using a limited number of visual samples. Existing approaches attempt to incorporate semantic information into the limited visual data for category understanding. However, these methods often enrich class-level feature representations with abstract category names, failing to capture the nuanced features essential for effective generalization. To address this issue, we propose a novel framework for FSL, which incorporates both the abstract class semantics and the concrete class entities extracted from Large Language Models (LLMs), to enhance the representation of the class prototypes. Specifically, our framework composes a Semantic-guided Visual Pattern Extraction (SVPE) module and a Prototype-Calibration (PC) module, where the SVPE meticulously extracts semantic-aware visual patterns across diverse scales, while the PC module seamlessly integrates these patterns to refine the visual prototype, enhancing its representativeness. Extensive experiments on four few-shot classification benchmarks and the BSCD-FSL cross-domain benchmarks showcase remarkable advancements over the current state-of-the-art methods. Notably, for the challenging one-shot setting, our approach, utilizing the ResNet-12 backbone, achieves an impressive average improvement of 1.95% over the second-best competitor.
Abstract:In this paper, we propose a novel Temporal Sequence-Aware Model (TSAM) for few-shot action recognition (FSAR), which incorporates a sequential perceiver adapter into the pre-training framework, to integrate both the spatial information and the sequential temporal dynamics into the feature embeddings. Different from the existing fine-tuning approaches that capture temporal information by exploring the relationships among all the frames, our perceiver-based adapter recurrently captures the sequential dynamics alongside the timeline, which could perceive the order change. To obtain the discriminative representations for each class, we extend a textual corpus for each class derived from the large language models (LLMs) and enrich the visual prototypes by integrating the contextual semantic information. Besides, We introduce an unbalanced optimal transport strategy for feature matching that mitigates the impact of class-unrelated features, thereby facilitating more effective decision-making. Experimental results on five FSAR datasets demonstrate that our method set a new benchmark, beating the second-best competitors with large margins.
Abstract:Recent Vision-Language Models (VLMs) \textit{e.g.} CLIP have made great progress in video recognition. Despite the improvement brought by the strong visual backbone in extracting spatial features, CLIP still falls short in capturing and integrating spatial-temporal features which is essential for video recognition. In this paper, we propose OmniCLIP, a framework that adapts CLIP for video recognition by focusing on learning comprehensive features encompassing spatial, temporal, and dynamic spatial-temporal scales, which we refer to as omni-scale features. This is achieved through the design of spatial-temporal blocks that include parallel temporal adapters (PTA), enabling efficient temporal modeling. Additionally, we introduce a self-prompt generator (SPG) module to capture dynamic object spatial features. The synergy between PTA and SPG allows OmniCLIP to discern varying spatial information across frames and assess object scales over time. We have conducted extensive experiments in supervised video recognition, few-shot video recognition, and zero-shot recognition tasks. The results demonstrate the effectiveness of our method, especially with OmniCLIP achieving a top-1 accuracy of 74.30\% on HMDB51 in a 16-shot setting, surpassing the recent MotionPrompt approach even with full training data. The code is available at \url{https://github.com/XiaoBuL/OmniCLIP}.
Abstract:Auto-regressive models have made significant progress in the realm of language generation, yet they do not perform on par with diffusion models in the domain of image synthesis. In this work, we introduce MARS, a novel framework for T2I generation that incorporates a specially designed Semantic Vision-Language Integration Expert (SemVIE). This innovative component integrates pre-trained LLMs by independently processing linguistic and visual information, freezing the textual component while fine-tuning the visual component. This methodology preserves the NLP capabilities of LLMs while imbuing them with exceptional visual understanding. Building upon the powerful base of the pre-trained Qwen-7B, MARS stands out with its bilingual generative capabilities corresponding to both English and Chinese language prompts and the capacity for joint image and text generation. The flexibility of this framework lends itself to migration towards any-to-any task adaptability. Furthermore, MARS employs a multi-stage training strategy that first establishes robust image-text alignment through complementary bidirectional tasks and subsequently concentrates on refining the T2I generation process, significantly augmenting text-image synchrony and the granularity of image details. Notably, MARS requires only 9% of the GPU days needed by SD1.5, yet it achieves remarkable results across a variety of benchmarks, illustrating the training efficiency and the potential for swift deployment in various applications.
Abstract:Prompt tuning, which involves training a small set of parameters, effectively enhances the pre-trained Vision-Language Models (VLMs) to downstream tasks. However, they often come at the cost of flexibility and adaptability when the tuned models are applied to different datasets or domains. In this paper, we explore capturing the task-specific information via meticulous refinement of entire VLMs, with minimal parameter adjustments. When fine-tuning the entire VLMs for specific tasks under limited supervision, overfitting and catastrophic forgetting become the defacto factors. To mitigate these issues, we propose a framework named CLIP-CITE via designing a discriminative visual-text task, further aligning the visual-text semantics in a supervision manner, and integrating knowledge distillation techniques to preserve the gained knowledge. Extensive experimental results under few-shot learning, base-to-new generalization, domain generalization, and cross-domain generalization settings, demonstrate that our method effectively enhances the performance on specific tasks under limited supervision while preserving the versatility of the VLMs on other datasets.
Abstract:Diffusion Models have exhibited substantial success in text-to-image generation. However, they often encounter challenges when dealing with complex and dense prompts that involve multiple objects, attribute binding, and long descriptions. This paper proposes a framework called \textbf{LLM4GEN}, which enhances the semantic understanding ability of text-to-image diffusion models by leveraging the semantic representation of Large Language Models (LLMs). Through a specially designed Cross-Adapter Module (CAM) that combines the original text features of text-to-image models with LLM features, LLM4GEN can be easily incorporated into various diffusion models as a plug-and-play component and enhances text-to-image generation. Additionally, to facilitate the complex and dense prompts semantic understanding, we develop a LAION-refined dataset, consisting of 1 million (M) text-image pairs with improved image descriptions. We also introduce DensePrompts which contains 7,000 dense prompts to provide a comprehensive evaluation for the text-to-image generation task. With just 10\% of the training data required by recent ELLA, LLM4GEN significantly improves the semantic alignment of SD1.5 and SDXL, demonstrating increases of 7.69\% and 9.60\% in color on T2I-CompBench, respectively. The extensive experiments on DensePrompts also demonstrate that LLM4GEN surpasses existing state-of-the-art models in terms of sample quality, image-text alignment, and human evaluation. The project website is at: \textcolor{magenta}{\url{https://xiaobul.github.io/LLM4GEN/}}
Abstract:Due to the large-scale image size and object variations, current CNN-based and Transformer-based approaches for remote sensing image semantic segmentation are suboptimal for capturing the long-range dependency or limited to the complex computational complexity. In this paper, we propose CM-UNet, comprising a CNN-based encoder for extracting local image features and a Mamba-based decoder for aggregating and integrating global information, facilitating efficient semantic segmentation of remote sensing images. Specifically, a CSMamba block is introduced to build the core segmentation decoder, which employs channel and spatial attention as the gate activation condition of the vanilla Mamba to enhance the feature interaction and global-local information fusion. Moreover, to further refine the output features from the CNN encoder, a Multi-Scale Attention Aggregation (MSAA) module is employed to merge the different scale features. By integrating the CSMamba block and MSAA module, CM-UNet effectively captures the long-range dependencies and multi-scale global contextual information of large-scale remote-sensing images. Experimental results obtained on three benchmarks indicate that the proposed CM-UNet outperforms existing methods in various performance metrics. The codes are available at https://github.com/XiaoBuL/CM-UNet.
Abstract:Prompt learning is a powerful technique for transferring Vision-Language Models (VLMs) such as CLIP to downstream tasks. However, the prompt-based methods that are fine-tuned solely with base classes may struggle to generalize to novel classes in open-vocabulary scenarios, especially when data are limited. To address this issue, we propose an innovative approach called SYNC-CLIP that leverages SYNthetiC data for enhancing the generalization capability of CLIP. Based on the observation of the distribution shift between the real and synthetic samples, we treat real and synthetic samples as distinct domains and propose to optimize separate domain prompts to capture domain-specific information, along with the shared visual prompts to preserve the semantic consistency between two domains. By aligning the cross-domain features, the synthetic data from novel classes can provide implicit guidance to rebalance the decision boundaries. Experimental results on three model generalization tasks demonstrate that our method performs very competitively across various benchmarks. Notably, SYNC-CLIP outperforms the state-of-the-art competitor PromptSRC by an average improvement of 3.0% on novel classes across 11 datasets in open-vocabulary scenarios.