Mark
Abstract:Single-frame infrared small target (SIRST) detection poses a significant challenge due to the requirement to discern minute targets amidst complex infrared background clutter. Recently, deep learning approaches have shown promising results in this domain. However, these methods heavily rely on extensive manual annotations, which are particularly cumbersome and resource-intensive for infrared small targets owing to their minute sizes. To address this limitation, we introduce a Hybrid Mask Generation (HMG) approach that recovers high-quality masks for each target from only a single-point label for network training. Specifically, our HMG approach consists of a handcrafted Points-to-Mask Generation strategy coupled with a pseudo mask updating strategy to recover and refine pseudo masks from point labels. The Points-to-Mask Generation strategy divides two distinct stages: Points-to-Box conversion, where individual point labels are transformed into bounding boxes, and subsequently, Box-to-Mask prediction, where these bounding boxes are elaborated into precise masks. The mask updating strategy integrates the complementary strengths of handcrafted and deep-learning algorithms to iteratively refine the initial pseudo masks. Experimental results across three datasets demonstrate that our method outperforms the existing methods for infrared small target detection with single-point supervision.
Abstract:Few-shot learning (FSL) aims to recognize new concepts using a limited number of visual samples. Existing approaches attempt to incorporate semantic information into the limited visual data for category understanding. However, these methods often enrich class-level feature representations with abstract category names, failing to capture the nuanced features essential for effective generalization. To address this issue, we propose a novel framework for FSL, which incorporates both the abstract class semantics and the concrete class entities extracted from Large Language Models (LLMs), to enhance the representation of the class prototypes. Specifically, our framework composes a Semantic-guided Visual Pattern Extraction (SVPE) module and a Prototype-Calibration (PC) module, where the SVPE meticulously extracts semantic-aware visual patterns across diverse scales, while the PC module seamlessly integrates these patterns to refine the visual prototype, enhancing its representativeness. Extensive experiments on four few-shot classification benchmarks and the BSCD-FSL cross-domain benchmarks showcase remarkable advancements over the current state-of-the-art methods. Notably, for the challenging one-shot setting, our approach, utilizing the ResNet-12 backbone, achieves an impressive average improvement of 1.95% over the second-best competitor.
Abstract:In this paper, we propose a novel Temporal Sequence-Aware Model (TSAM) for few-shot action recognition (FSAR), which incorporates a sequential perceiver adapter into the pre-training framework, to integrate both the spatial information and the sequential temporal dynamics into the feature embeddings. Different from the existing fine-tuning approaches that capture temporal information by exploring the relationships among all the frames, our perceiver-based adapter recurrently captures the sequential dynamics alongside the timeline, which could perceive the order change. To obtain the discriminative representations for each class, we extend a textual corpus for each class derived from the large language models (LLMs) and enrich the visual prototypes by integrating the contextual semantic information. Besides, We introduce an unbalanced optimal transport strategy for feature matching that mitigates the impact of class-unrelated features, thereby facilitating more effective decision-making. Experimental results on five FSAR datasets demonstrate that our method set a new benchmark, beating the second-best competitors with large margins.
Abstract:Recent Vision-Language Models (VLMs) \textit{e.g.} CLIP have made great progress in video recognition. Despite the improvement brought by the strong visual backbone in extracting spatial features, CLIP still falls short in capturing and integrating spatial-temporal features which is essential for video recognition. In this paper, we propose OmniCLIP, a framework that adapts CLIP for video recognition by focusing on learning comprehensive features encompassing spatial, temporal, and dynamic spatial-temporal scales, which we refer to as omni-scale features. This is achieved through the design of spatial-temporal blocks that include parallel temporal adapters (PTA), enabling efficient temporal modeling. Additionally, we introduce a self-prompt generator (SPG) module to capture dynamic object spatial features. The synergy between PTA and SPG allows OmniCLIP to discern varying spatial information across frames and assess object scales over time. We have conducted extensive experiments in supervised video recognition, few-shot video recognition, and zero-shot recognition tasks. The results demonstrate the effectiveness of our method, especially with OmniCLIP achieving a top-1 accuracy of 74.30\% on HMDB51 in a 16-shot setting, surpassing the recent MotionPrompt approach even with full training data. The code is available at \url{https://github.com/XiaoBuL/OmniCLIP}.
Abstract:Prompt tuning, which involves training a small set of parameters, effectively enhances the pre-trained Vision-Language Models (VLMs) to downstream tasks. However, they often come at the cost of flexibility and adaptability when the tuned models are applied to different datasets or domains. In this paper, we explore capturing the task-specific information via meticulous refinement of entire VLMs, with minimal parameter adjustments. When fine-tuning the entire VLMs for specific tasks under limited supervision, overfitting and catastrophic forgetting become the defacto factors. To mitigate these issues, we propose a framework named CLIP-CITE via designing a discriminative visual-text task, further aligning the visual-text semantics in a supervision manner, and integrating knowledge distillation techniques to preserve the gained knowledge. Extensive experimental results under few-shot learning, base-to-new generalization, domain generalization, and cross-domain generalization settings, demonstrate that our method effectively enhances the performance on specific tasks under limited supervision while preserving the versatility of the VLMs on other datasets.
Abstract:Generative models are widely utilized to model the distribution of fused images in the field of infrared and visible image fusion. However, current generative models based fusion methods often suffer from unstable training and slow inference speed. To tackle this problem, a novel fusion method based on consistency model is proposed, termed as CoMoFusion, which can generate the high-quality images and achieve fast image inference speed. In specific, the consistency model is used to construct multi-modal joint features in the latent space with the forward and reverse process. Then, the infrared and visible features extracted by the trained consistency model are fed into fusion module to generate the final fused image. In order to enhance the texture and salient information of fused images, a novel loss based on pixel value selection is also designed. Extensive experiments on public datasets illustrate that our method obtains the SOTA fusion performance compared with the existing fusion methods.
Abstract:Due to the large-scale image size and object variations, current CNN-based and Transformer-based approaches for remote sensing image semantic segmentation are suboptimal for capturing the long-range dependency or limited to the complex computational complexity. In this paper, we propose CM-UNet, comprising a CNN-based encoder for extracting local image features and a Mamba-based decoder for aggregating and integrating global information, facilitating efficient semantic segmentation of remote sensing images. Specifically, a CSMamba block is introduced to build the core segmentation decoder, which employs channel and spatial attention as the gate activation condition of the vanilla Mamba to enhance the feature interaction and global-local information fusion. Moreover, to further refine the output features from the CNN encoder, a Multi-Scale Attention Aggregation (MSAA) module is employed to merge the different scale features. By integrating the CSMamba block and MSAA module, CM-UNet effectively captures the long-range dependencies and multi-scale global contextual information of large-scale remote-sensing images. Experimental results obtained on three benchmarks indicate that the proposed CM-UNet outperforms existing methods in various performance metrics. The codes are available at https://github.com/XiaoBuL/CM-UNet.
Abstract:Prompt learning is a powerful technique for transferring Vision-Language Models (VLMs) such as CLIP to downstream tasks. However, the prompt-based methods that are fine-tuned solely with base classes may struggle to generalize to novel classes in open-vocabulary scenarios, especially when data are limited. To address this issue, we propose an innovative approach called SYNC-CLIP that leverages SYNthetiC data for enhancing the generalization capability of CLIP. Based on the observation of the distribution shift between the real and synthetic samples, we treat real and synthetic samples as distinct domains and propose to optimize separate domain prompts to capture domain-specific information, along with the shared visual prompts to preserve the semantic consistency between two domains. By aligning the cross-domain features, the synthetic data from novel classes can provide implicit guidance to rebalance the decision boundaries. Experimental results on three model generalization tasks demonstrate that our method performs very competitively across various benchmarks. Notably, SYNC-CLIP outperforms the state-of-the-art competitor PromptSRC by an average improvement of 3.0% on novel classes across 11 datasets in open-vocabulary scenarios.
Abstract:Few-Shot Segmentation (FSS) aims to segment the novel class images with a few annotated samples. In this paper, we propose a dense affinity matching (DAM) framework to exploit the support-query interaction by densely capturing both the pixel-to-pixel and pixel-to-patch relations in each support-query pair with the bidirectional 3D convolutions. Different from the existing methods that remove the support background, we design a hysteretic spatial filtering module (HSFM) to filter the background-related query features and retain the foreground-related query features with the assistance of the support background, which is beneficial for eliminating interference objects in the query background. We comprehensively evaluate our DAM on ten benchmarks under cross-category, cross-dataset, and cross-domain FSS tasks. Experimental results demonstrate that DAM performs very competitively under different settings with only 0.68M parameters, especially under cross-domain FSS tasks, showing its effectiveness and efficiency.
Abstract:Gait recognition, which aims at identifying individuals by their walking patterns, has recently drawn increasing research attention. However, gait recognition still suffers from the conflicts between the limited binary visual clues of the silhouette and numerous covariates with diverse scales, which brings challenges to the model's adaptiveness. In this paper, we address this conflict by developing a novel MetaGait that learns to learn an omni sample adaptive representation. Towards this goal, MetaGait injects meta-knowledge, which could guide the model to perceive sample-specific properties, into the calibration network of the attention mechanism to improve the adaptiveness from the omni-scale, omni-dimension, and omni-process perspectives. Specifically, we leverage the meta-knowledge across the entire process, where Meta Triple Attention and Meta Temporal Pooling are presented respectively to adaptively capture omni-scale dependency from spatial/channel/temporal dimensions simultaneously and to adaptively aggregate temporal information through integrating the merits of three complementary temporal aggregation methods. Extensive experiments demonstrate the state-of-the-art performance of the proposed MetaGait. On CASIA-B, we achieve rank-1 accuracy of 98.7%, 96.0%, and 89.3% under three conditions, respectively. On OU-MVLP, we achieve rank-1 accuracy of 92.4%.