Senior Member, IEEE
Abstract:The rapid advancement of deep generative models (DGMs) has significantly advanced research in computer vision, providing a cost-effective alternative to acquiring vast quantities of expensive imagery. However, existing methods predominantly focus on synthesizing remote sensing (RS) images aligned with real images in a global layout view, which limits their applicability in RS image object detection (RSIOD) research. To address these challenges, we propose a multi-class and multi-scale object image generator based on DGMs, termed MMO-IG, designed to generate RS images with supervised object labels from global and local aspects simultaneously. Specifically, from the local view, MMO-IG encodes various RS instances using an iso-spacing instance map (ISIM). During the generation process, it decodes each instance region with iso-spacing value in ISIM-corresponding to both background and foreground instances-to produce RS images through the denoising process of diffusion models. Considering the complex interdependencies among MMOs, we construct a spatial-cross dependency knowledge graph (SCDKG). This ensures a realistic and reliable multidirectional distribution among MMOs for region embedding, thereby reducing the discrepancy between source and target domains. Besides, we propose a structured object distribution instruction (SODI) to guide the generation of synthesized RS image content from a global aspect with SCDKG-based ISIM together. Extensive experimental results demonstrate that our MMO-IG exhibits superior generation capabilities for RS images with dense MMO-supervised labels, and RS detectors pre-trained with MMO-IG show excellent performance on real-world datasets.
Abstract:Atmospheric science is intricately connected with other fields, e.g., geography and aerospace. Most existing approaches involve training a joint atmospheric and geographic model from scratch, which incurs significant computational costs and overlooks the potential for incremental learning of weather variables across different domains. In this paper, we introduce incremental learning to weather forecasting and propose a novel structure that allows for the flexible expansion of variables within the model. Specifically, our method presents a Channel-Adapted MoE (CA-MoE) that employs a divide-and-conquer strategy. This strategy assigns variable training tasks to different experts by index embedding and reduces computational complexity through a channel-wise Top-K strategy. Experiments conducted on the widely utilized ERA5 dataset reveal that our method, utilizing only approximately 15\% of trainable parameters during the incremental stage, attains performance that is on par with state-of-the-art competitors. Notably, in the context of variable incremental experiments, our method demonstrates negligible issues with catastrophic forgetting.
Abstract:Traffic signs play a key role in assisting autonomous driving systems (ADS) by enabling the assessment of vehicle behavior in compliance with traffic regulations and providing navigation instructions. However, current works are limited to basic sign understanding without considering the egocentric vehicle's spatial position, which fails to support further regulation assessment and direction navigation. Following the above issues, we introduce a new task: traffic sign interpretation from the vehicle's first-person view, referred to as TSI-FPV. Meanwhile, we develop a traffic guidance assistant (TGA) scenario application to re-explore the role of traffic signs in ADS as a complement to popular autonomous technologies (such as obstacle perception). Notably, TGA is not a replacement for electronic map navigation; rather, TGA can be an automatic tool for updating it and complementing it in situations such as offline conditions or temporary sign adjustments. Lastly, a spatial and semantic logic-aware stepwise reasoning pipeline (SignEye) is constructed to achieve the TSI-FPV and TGA, and an application-specific dataset (Traffic-CN) is built. Experiments show that TSI-FPV and TGA are achievable via our SignEye trained on Traffic-CN. The results also demonstrate that the TGA can provide complementary information to ADS beyond existing popular autonomous technologies.
Abstract:Terahertz (THz) communications, with their substantial bandwidth, are essential for meeting the ultra-high data rate demands of emerging high-mobility scenarios such as vehicular-to-everything (V2X) networks. In these contexts, beamwidth adaptation has been explored to address the problem that high-mobility targets frequently move out of the narrow THz beam range. However, existing approaches cannot effectively track targets due to a lack of real-time motion awareness. Consequently, we propose a sensing-assisted beam tracking scheme with real-time beamwidth adaptation. Specifically, the base station (BS) periodically collects prior sensing information to predict the target's motion path by applying a particular motion model. Then, we build a pre-calculated codebook by optimising precoders to align the beamwidth with various predicted target paths, thereby maximising the average achievable data rates within each sensing period. Finally, the BS selects the optimal precoder from the codebook to maintain stable and continuous connectivity. Simulation results show that the proposed scheme significantly improves the rate performance and reduces outage probability compared to existing approaches under various target mobility.
Abstract:Texts on the intelligent transportation scene include mass information. Fully harnessing this information is one of the critical drivers for advancing intelligent transportation. Unlike the general scene, detecting text in transportation has extra demand, such as a fast inference speed, except for high accuracy. Most existing real-time text detection methods are based on the shrink mask, which loses some geometry semantic information and needs complex post-processing. In addition, the previous method usually focuses on correct output, which ignores feature correction and lacks guidance during the intermediate process. To this end, we propose an efficient multi-scene text detector that contains an effective text representation similar mask (SM) and a feature correction module (FCM). Unlike previous methods, the former aims to preserve the geometric information of the instances as much as possible. Its post-progressing saves 50$\%$ of the time, accurately and efficiently reconstructing text contours. The latter encourages false positive features to move away from the positive feature center, optimizing the predictions from the feature level. Some ablation studies demonstrate the efficiency of the SM and the effectiveness of the FCM. Moreover, the deficiency of existing traffic datasets (such as the low-quality annotation or closed source data unavailability) motivated us to collect and annotate a traffic text dataset, which introduces motion blur. In addition, to validate the scene robustness of the SM-Net, we conduct experiments on traffic, industrial, and natural scene datasets. Extensive experiments verify it achieves (SOTA) performance on several benchmarks. The code and dataset are available at: \url{https://github.com/fengmulin/SMNet}.
Abstract:Human mobility prediction plays a critical role in applications such as disaster response, urban planning, and epidemic forecasting. Traditional methods often rely on designing crafted, domain-specific models, and typically focus on short-term predictions, which struggle to generalize across diverse urban environments. In this study, we introduce Llama-3-8B-Mob, a large language model fine-tuned with instruction tuning, for long-term citywide mobility prediction -- in a Q&A manner. We validate our approach using large-scale human mobility data from four metropolitan areas in Japan, focusing on predicting individual trajectories over the next 15 days. The results demonstrate that Llama-3-8B-Mob excels in modeling long-term human mobility -- surpassing the state-of-the-art on multiple prediction metrics. It also displays strong zero-shot generalization capabilities -- effectively generalizing to other cities even when fine-tuned only on limited samples from a single city. Source codes are available at https://github.com/TANGHULU6/Llama3-8B-Mob.
Abstract:With the popularity of location-based services, human mobility prediction plays a key role in enhancing personalized navigation, optimizing recommendation systems, and facilitating urban mobility and planning. This involves predicting a user's next POI (point-of-interest) visit using their past visit history. However, the uneven distribution of visitations over time and space, namely the long-tail problem in spatial distribution, makes it difficult for AI models to predict those POIs that are less visited by humans. In light of this issue, we propose the Long-Tail Adjusted Next POI Prediction (LoTNext) framework for mobility prediction, combining a Long-Tailed Graph Adjustment module to reduce the impact of the long-tailed nodes in the user-POI interaction graph and a novel Long-Tailed Loss Adjustment module to adjust loss by logit score and sample weight adjustment strategy. Also, we employ the auxiliary prediction task to enhance generalization and accuracy. Our experiments with two real-world trajectory datasets demonstrate that LoTNext significantly surpasses existing state-of-the-art works. Our code is available at https://github.com/Yukayo/LoTNext.
Abstract:Free-space trajectory similarity calculation, e.g., DTW, Hausdorff, and Frechet, often incur quadratic time complexity, thus learning-based methods have been proposed to accelerate the computation. The core idea is to train an encoder to transform trajectories into representation vectors and then compute vector similarity to approximate the ground truth. However, existing methods face dual challenges of effectiveness and efficiency: 1) they all utilize Euclidean distance to compute representation similarity, which leads to the severe curse of dimensionality issue -- reducing the distinguishability among representations and significantly affecting the accuracy of subsequent similarity search tasks; 2) most of them are trained in triplets manner and often necessitate additional information which downgrades the efficiency; 3) previous studies, while emphasizing the scalability in terms of efficiency, overlooked the deterioration of effectiveness when the dataset size grows. To cope with these issues, we propose a simple, yet accurate, fast, scalable model that only uses a single-layer vanilla transformer encoder as the feature extractor and employs tailored representation similarity functions to approximate various ground truth similarity measures. Extensive experiments demonstrate our model significantly mitigates the curse of dimensionality issue and outperforms the state-of-the-arts in effectiveness, efficiency, and scalability.
Abstract:Due to the diversity of scene text in aspects such as font, color, shape, and size, accurately and efficiently detecting text is still a formidable challenge. Among the various detection approaches, segmentation-based approaches have emerged as prominent contenders owing to their flexible pixel-level predictions. However, these methods typically model text instances in a bottom-up manner, which is highly susceptible to noise. In addition, the prediction of pixels is isolated without introducing pixel-feature interaction, which also influences the detection performance. To alleviate these problems, we propose a multi-information level arbitrary-shaped text detector consisting of a focus entirety module (FEM) and a perceive environment module (PEM). The former extracts instance-level features and adopts a top-down scheme to model texts to reduce the influence of noises. Specifically, it assigns consistent entirety information to pixels within the same instance to improve their cohesion. In addition, it emphasizes the scale information, enabling the model to distinguish varying scale texts effectively. The latter extracts region-level information and encourages the model to focus on the distribution of positive samples in the vicinity of a pixel, which perceives environment information. It treats the kernel pixels as positive samples and helps the model differentiate text and kernel features. Extensive experiments demonstrate the FEM's ability to efficiently support the model in handling different scale texts and confirm the PEM can assist in perceiving pixels more accurately by focusing on pixel vicinities. Comparisons show the proposed model outperforms existing state-of-the-art approaches on four public datasets.
Abstract:The irregular contour representation is one of the tough challenges in scene text detection. Although segmentation-based methods have achieved significant progress with the help of flexible pixel prediction, the overlap of geographically close texts hinders detecting them separately. To alleviate this problem, some shrink-based methods predict text kernels and expand them to restructure texts. However, the text kernel is an artificial object with incomplete semantic features that are prone to incorrect or missing detection. In addition, different from the general objects, the geometry features (aspect ratio, scale, and shape) of scene texts vary significantly, which makes it difficult to detect them accurately. To consider the above problems, we propose an effective spotlight text detector (STD), which consists of a spotlight calibration module (SCM) and a multivariate information extraction module (MIEM). The former concentrates efforts on the candidate kernel, like a camera focus on the target. It obtains candidate features through a mapping filter and calibrates them precisely to eliminate some false positive samples. The latter designs different shape schemes to explore multiple geometric features for scene texts. It helps extract various spatial relationships to improve the model's ability to recognize kernel regions. Ablation studies prove the effectiveness of the designed SCM and MIEM. Extensive experiments verify that our STD is superior to existing state-of-the-art methods on various datasets, including ICDAR2015, CTW1500, MSRA-TD500, and Total-Text.