Linda
Abstract:Long-term weather forecasting is critical for socioeconomic planning and disaster preparedness. While recent approaches employ finetuning to extend prediction horizons, they remain constrained by the issues of catastrophic forgetting, error accumulation, and high training overhead. To address these limitations, we present a novel pipeline across pretraining, finetuning and forecasting to enhance long-context modeling while reducing computational overhead. First, we introduce an Efficient Multi-scale Transformer (EMFormer) to extract multi-scale features through a single convolution in both training and inference. Based on the new architecture, we further employ an accumulative context finetuning to improve temporal consistency without degrading short-term accuracy. Additionally, we propose a composite loss that dynamically balances different terms via a sinusoidal weighting, thereby adaptively guiding the optimization trajectory throughout pretraining and finetuning. Experiments show that our approach achieves strong performance in weather forecasting and extreme event prediction, substantially improving long-term forecast accuracy. Moreover, EMFormer demonstrates strong generalization on vision benchmarks (ImageNet-1K and ADE20K) while delivering a 5.69x speedup over conventional multi-scale modules.
Abstract:Counting and tracking dense crowds in large-scale scenes is highly challenging, yet existing methods mainly rely on datasets captured by fixed cameras, which provide limited spatial coverage and are inadequate for large-scale dense crowd analysis. To address this limitation, we propose a flexible solution using moving drones to capture videos and perform video-level crowd counting and tracking of unique pedestrians across entire scenes. We introduce MovingDroneCrowd++, the largest video-level dataset for dense crowd counting and tracking captured by moving drones, covering diverse and complex conditions with varying flight altitudes, camera angles, and illumination. Existing methods fail to achieve satisfactory performance on this dataset. To this end, we propose GD3A (Global Density Map Decomposition via Descriptor Association), a density map-based video individual counting method that avoids explicit localization. GD3A establishes pixel-level correspondences between pedestrian descriptors across consecutive frames via optimal transport with an adaptive dustbin score, enabling the decomposition of global density maps into shared, inflow, and outflow components. Building on this framework, we further introduce DVTrack, which converts descriptor-level matching into instance-level associations through a descriptor voting mechanism for pedestrian tracking. Experimental results show that our methods significantly outperform existing approaches under dense crowds and complex motion, reducing counting error by 47.4 percent and improving tracking performance by 39.2 percent.
Abstract:Deep learning models such as MLP, Transformer, and TCN have achieved remarkable success in univariate time series forecasting, typically relying on sliding window samples from historical data for training. However, while these models implicitly compress historical information into their parameters during training, they are unable to explicitly and dynamically access this global knowledge during inference, relying only on the local context within the lookback window. This results in an underutilization of rich patterns from the global history. To bridge this gap, we propose Predicting the Future by Retrieving the Past (PFRP), a novel approach that explicitly integrates global historical data to enhance forecasting accuracy. Specifically, we construct a Global Memory Bank (GMB) to effectively store and manage global historical patterns. A retrieval mechanism is then employed to extract similar patterns from the GMB, enabling the generation of global predictions. By adaptively combining these global predictions with the outputs of any local prediction model, PFRP produces more accurate and interpretable forecasts. Extensive experiments conducted on seven real-world datasets demonstrate that PFRP significantly enhances the average performance of advanced univariate forecasting models by 8.4\%. Codes can be found in https://github.com/ddz16/PFRP.




Abstract:Existing pretrained models for 3D mesh generation often suffer from data biases and produce low-quality results, while global reinforcement learning (RL) methods rely on object-level rewards that struggle to capture local structure details. To address these challenges, we present \textbf{Mesh-RFT}, a novel fine-grained reinforcement fine-tuning framework that employs Masked Direct Preference Optimization (M-DPO) to enable localized refinement via quality-aware face masking. To facilitate efficient quality evaluation, we introduce an objective topology-aware scoring system to evaluate geometric integrity and topological regularity at both object and face levels through two metrics: Boundary Edge Ratio (BER) and Topology Score (TS). By integrating these metrics into a fine-grained RL strategy, Mesh-RFT becomes the first method to optimize mesh quality at the granularity of individual faces, resolving localized errors while preserving global coherence. Experiment results show that our M-DPO approach reduces Hausdorff Distance (HD) by 24.6\% and improves Topology Score (TS) by 3.8\% over pre-trained models, while outperforming global DPO methods with a 17.4\% HD reduction and 4.9\% TS gain. These results demonstrate Mesh-RFT's ability to improve geometric integrity and topological regularity, achieving new state-of-the-art performance in production-ready mesh generation. Project Page: \href{https://hitcslj.github.io/mesh-rft/}{this https URL}.




Abstract:The next-coordinate prediction paradigm has emerged as the de facto standard in current auto-regressive mesh generation methods. Despite their effectiveness, there is no efficient measurement for the various tokenizers that serialize meshes into sequences. In this paper, we introduce a new metric Per-Token-Mesh-Entropy (PTME) to evaluate the existing mesh tokenizers theoretically without any training. Building upon PTME, we propose a plug-and-play tokenization technique called coordinate merging. It further improves the compression ratios of existing tokenizers by rearranging and merging the most frequent patterns of coordinates. Through experiments on various tokenization methods like MeshXL, MeshAnything V2, and Edgerunner, we further validate the performance of our method. We hope that the proposed PTME and coordinate merging can enhance the existing mesh tokenizers and guide the further development of native mesh generation.




Abstract:This survey serves as a review for the 2025 Event-Based Eye Tracking Challenge organized as part of the 2025 CVPR event-based vision workshop. This challenge focuses on the task of predicting the pupil center by processing event camera recorded eye movement. We review and summarize the innovative methods from teams rank the top in the challenge to advance future event-based eye tracking research. In each method, accuracy, model size, and number of operations are reported. In this survey, we also discuss event-based eye tracking from the perspective of hardware design.




Abstract:Pursuing efficient text shape representations helps scene text detection models focus on compact foreground regions and optimize the contour reconstruction steps to simplify the whole detection pipeline. Current approaches either represent irregular shapes via box-to-polygon strategy or decomposing a contour into pieces for fitting gradually, the deficiency of coarse contours or complex pipelines always exists in these models. Considering the above issues, we introduce EdgeText to fit text contours compactly while alleviating excessive contour rebuilding processes. Concretely, it is observed that the two long edges of texts can be regarded as smooth curves. It allows us to build contours via continuous and smooth edges that cover text regions tightly instead of fitting piecewise, which helps avoid the two limitations in current models. Inspired by this observation, EdgeText formulates the text representation as the edge approximation problem via parameterized curve fitting functions. In the inference stage, our model starts with locating text centers, and then creating curve functions for approximating text edges relying on the points. Meanwhile, truncation points are determined based on the location features. In the end, extracting curve segments from curve functions by using the pixel coordinate information brought by truncation points to reconstruct text contours. Furthermore, considering the deep dependency of EdgeText on text edges, a bilateral enhanced perception (BEP) module is designed. It encourages our model to pay attention to the recognition of edge features. Additionally, to accelerate the learning of the curve function parameters, we introduce a proportional integral loss (PI-loss) to force the proposed model to focus on the curve distribution and avoid being disturbed by text scales.
Abstract:In this work, we explore the potential of large language models (LLMs) for generating functional test scripts, which necessitates understanding the dynamically evolving code structure of the target software. To achieve this, we propose a case-based reasoning (CBR) system utilizing a 4R cycle (i.e., retrieve, reuse, revise, and retain), which maintains and leverages a case bank of test intent descriptions and corresponding test scripts to facilitate LLMs for test script generation. To improve user experience further, we introduce Re4, an optimization method for the CBR system, comprising reranking-based retrieval finetuning and reinforced reuse finetuning. Specifically, we first identify positive examples with high semantic and script similarity, providing reliable pseudo-labels for finetuning the retriever model without costly labeling. Then, we apply supervised finetuning, followed by a reinforcement learning finetuning stage, to align LLMs with our production scenarios, ensuring the faithful reuse of retrieved cases. Extensive experimental results on two product development units from Huawei Datacom demonstrate the superiority of the proposed CBR+Re4. Notably, we also show that the proposed Re4 method can help alleviate the repetitive generation issues with LLMs.
Abstract:3D semantic occupancy has rapidly become a research focus in the fields of robotics and autonomous driving environment perception due to its ability to provide more realistic geometric perception and its closer integration with downstream tasks. By performing occupancy prediction of the 3D space in the environment, the ability and robustness of scene understanding can be effectively improved. However, existing occupancy prediction tasks are primarily modeled using voxel or point cloud-based approaches: voxel-based network structures often suffer from the loss of spatial information due to the voxelization process, while point cloud-based methods, although better at retaining spatial location information, face limitations in representing volumetric structural details. To address this issue, we propose a dual-modal prediction method based on 3D Gaussian sets and sparse points, which balances both spatial location and volumetric structural information, achieving higher accuracy in semantic occupancy prediction. Specifically, our method adopts a Transformer-based architecture, taking 3D Gaussian sets, sparse points, and queries as inputs. Through the multi-layer structure of the Transformer, the enhanced queries and 3D Gaussian sets jointly contribute to the semantic occupancy prediction, and an adaptive fusion mechanism integrates the semantic outputs of both modalities to generate the final prediction results. Additionally, to further improve accuracy, we dynamically refine the point cloud at each layer, allowing for more precise location information during occupancy prediction. We conducted experiments on the Occ3DnuScenes dataset, and the experimental results demonstrate superior performance of the proposed method on IoU based metrics.
Abstract:The increasing impact of climate change and extreme weather events has spurred growing interest in deep learning for weather research. However, existing studies often rely on weather data in pixel space, which presents several challenges such as smooth outputs in model outputs, limited applicability to a single pressure-variable subset (PVS), and high data storage and computational costs. To address these challenges, we propose a novel Weather Latent Autoencoder (WLA) that transforms weather data from pixel space to latent space, enabling efficient weather task modeling. By decoupling weather reconstruction from downstream tasks, WLA improves the accuracy and sharpness of weather task model results. The incorporated Pressure-Variable Unified Module transforms multiple PVS into a unified representation, enhancing the adaptability of the model in multiple weather scenarios. Furthermore, weather tasks can be performed in a low-storage latent space of WLA rather than a high-storage pixel space, thus significantly reducing data storage and computational costs. Through extensive experimentation, we demonstrate its superior compression and reconstruction performance, enabling the creation of the ERA5-latent dataset with unified representations of multiple PVS from ERA5 data. The compressed full PVS in the ERA5-latent dataset reduces the original 244.34 TB of data to 0.43 TB. The downstream task further demonstrates that task models can apply to multiple PVS with low data costs in latent space and achieve superior performance compared to models in pixel space. Code, ERA5-latent data, and pre-trained models are available at https://anonymous.4open.science/r/Weather-Latent-Autoencoder-8467.