Abstract:Click-Through Rate (CTR) prediction holds a paramount position in recommender systems. The prevailing ID-based paradigm underperforms in cold-start scenarios due to the skewed distribution of feature frequency. Additionally, the utilization of a single modality fails to exploit the knowledge contained within textual features. Recent efforts have sought to mitigate these challenges by integrating Pre-trained Language Models (PLMs). They design hard prompts to structure raw features into text for each interaction and then apply PLMs for text processing. With external knowledge and reasoning capabilities, PLMs extract valuable information even in cases of sparse interactions. Nevertheless, compared to ID-based models, pure text modeling degrades the efficacy of collaborative filtering, as well as feature scalability and efficiency during both training and inference. To address these issues, we propose \textbf{C}ost-\textbf{E}fficient \textbf{L}anguage Model \textbf{A}lignment (\textbf{CELA}) for CTR prediction. CELA incorporates textual features and language models while preserving the collaborative filtering capabilities of ID-based models. This model-agnostic framework can be equipped with plug-and-play textual features, with item-level alignment enhancing the utilization of external information while maintaining training and inference efficiency. Through extensive offline experiments, CELA demonstrates superior performance compared to state-of-the-art methods. Furthermore, an online A/B test conducted on an industrial App recommender system showcases its practical effectiveness, solidifying the potential for real-world applications of CELA.
Abstract:Recently, large language models (LLMs) have demonstrated remarkable potential as an intelligent agent. However, existing researches mainly focus on enhancing the agent's reasoning or decision-making abilities through well-designed prompt engineering or task-specific fine-tuning, ignoring the procedure of exploration and exploitation. When addressing complex tasks within open-world interactive environments, these methods exhibit limitations. Firstly, the lack of global information of environments leads to greedy decisions, resulting in sub-optimal solutions. On the other hand, irrelevant information acquired from the environment not only adversely introduces noise, but also incurs additional cost. This paper proposes a novel approach, Weak Exploration to Strong Exploitation (WESE), to enhance LLM agents in solving open-world interactive tasks. Concretely, WESE involves decoupling the exploration and exploitation process, employing a cost-effective weak agent to perform exploration tasks for global knowledge. A knowledge graph-based strategy is then introduced to store the acquired knowledge and extract task-relevant knowledge, enhancing the stronger agent in success rate and efficiency for the exploitation task. Our approach is flexible enough to incorporate diverse tasks, and obtains significant improvements in both success rates and efficiency across four interactive benchmarks.
Abstract:We introduce YOSO, a novel generative model designed for rapid, scalable, and high-fidelity one-step image synthesis. This is achieved by integrating the diffusion process with GANs. Specifically, we smooth the distribution by the denoising generator itself, performing self-cooperative learning. We show that our method can serve as a one-step generation model training from scratch with competitive performance. Moreover, we show that our method can be extended to finetune pre-trained text-to-image diffusion for high-quality one-step text-to-image synthesis even with LoRA fine-tuning. In particular, we provide the first diffusion transformer that can generate images in one step trained on 512 resolution, with the capability of adapting to 1024 resolution without explicit training. Our code is provided at https://github.com/Luo-Yihong/YOSO.
Abstract:As Large Language Models (LLMs) have shown significant intelligence, the progress to leverage LLMs as planning modules of autonomous agents has attracted more attention. This survey provides the first systematic view of LLM-based agents planning, covering recent works aiming to improve planning ability. We provide a taxonomy of existing works on LLM-Agent planning, which can be categorized into Task Decomposition, Plan Selection, External Module, Reflection and Memory. Comprehensive analyses are conducted for each direction, and further challenges for the field of research are discussed.
Abstract:The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
Abstract:The superconducting linear accelerator is a highly flexiable facility for modern scientific discoveries, necessitating weekly reconfiguration and tuning. Accordingly, minimizing setup time proves essential in affording users with ample experimental time. We propose a trend-based soft actor-critic(TBSAC) beam control method with strong robustness, allowing the agents to be trained in a simulated environment and applied to the real accelerator directly with zero-shot. To validate the effectiveness of our method, two different typical beam control tasks were performed on China Accelerator Facility for Superheavy Elements (CAFe II) and a light particle injector(LPI) respectively. The orbit correction tasks were performed in three cryomodules in CAFe II seperately, the time required for tuning has been reduced to one-tenth of that needed by human experts, and the RMS values of the corrected orbit were all less than 1mm. The other transmission efficiency optimization task was conducted in the LPI, our agent successfully optimized the transmission efficiency of radio-frequency quadrupole(RFQ) to over $85\%$ within 2 minutes. The outcomes of these two experiments offer substantiation that our proposed TBSAC approach can efficiently and effectively accomplish beam commissioning tasks while upholding the same standard as skilled human experts. As such, our method exhibits potential for future applications in other accelerator commissioning fields.
Abstract:Product ranking is the core problem for revenue-maximizing online retailers. To design proper product ranking algorithms, various consumer choice models are proposed to characterize the consumers' behaviors when they are provided with a list of products. However, existing works assume that each consumer purchases at most one product or will keep viewing the product list after purchasing a product, which does not agree with the common practice in real scenarios. In this paper, we assume that each consumer can purchase multiple products at will. To model consumers' willingness to view and purchase, we set a random attention span and purchase budget, which determines the maximal amount of products that he/she views and purchases, respectively. Under this setting, we first design an optimal ranking policy when the online retailer can precisely model consumers' behaviors. Based on the policy, we further develop the Multiple-Purchase-with-Budget UCB (MPB-UCB) algorithms with $\~O(\sqrt{T})$ regret that estimate consumers' behaviors and maximize revenue simultaneously in online settings. Experiments on both synthetic and semi-synthetic datasets prove the effectiveness of the proposed algorithms.