Abstract:Large Language Models (LLMs) are often English-centric due to the disproportionate distribution of languages in their pre-training data. Enhancing non-English language capabilities through post-pretraining often results in catastrophic forgetting of the ability of original languages. Previous methods either achieve good expansion with severe forgetting or slight forgetting with poor expansion, indicating the challenge of balancing language expansion while preventing forgetting. In this paper, we propose a method called MoE-LPR (Mixture-of-Experts with Language Priors Routing) to alleviate this problem. MoE-LPR employs a two-stage training approach to enhance the multilingual capability. First, the model is post-pretrained into a Mixture-of-Experts (MoE) architecture by upcycling, where all the original parameters are frozen and new experts are added. In this stage, we focus improving the ability on expanded languages, without using any original language data. Then, the model reviews the knowledge of the original languages with replay data amounting to less than 1% of post-pretraining, where we incorporate language priors routing to better recover the abilities of the original languages. Evaluations on multiple benchmarks show that MoE-LPR outperforms other post-pretraining methods. Freezing original parameters preserves original language knowledge while adding new experts preserves the learning ability. Reviewing with LPR enables effective utilization of multilingual knowledge within the parameters. Additionally, the MoE architecture maintains the same inference overhead while increasing total model parameters. Extensive experiments demonstrate MoE-LPR's effectiveness in improving expanded languages and preserving original language proficiency with superior scalability. Code and scripts are freely available at https://github.com/zjwang21/MoE-LPR.git.
Abstract:Recent advancements in large language models (LLMs) have shown promising results across a variety of natural language processing (NLP) tasks. The application of LLMs to specific domains, such as biomedicine, has achieved increased attention. However, most biomedical LLMs focus on enhancing performance in monolingual biomedical question answering and conversation tasks. To further investigate the effectiveness of the LLMs on diverse biomedical NLP tasks in different languages, we present Taiyi, a bilingual (English and Chinese) fine-tuned LLM for diverse biomedical tasks. In this work, we first curated a comprehensive collection of 140 existing biomedical text mining datasets across over 10 task types. Subsequently, a two-stage strategy is proposed for supervised fine-tuning to optimize the model performance across varied tasks. Experimental results on 13 test sets covering named entity recognition, relation extraction, text classification, question answering tasks demonstrate Taiyi achieves superior performance compared to general LLMs. The case study involving additional biomedical NLP tasks further shows Taiyi's considerable potential for bilingual biomedical multi-tasking. The source code, datasets, and model for Taiyi are freely available at https://github.com/DUTIR-BioNLP/Taiyi-LLM.
Abstract:The superconducting linear accelerator is a highly flexiable facility for modern scientific discoveries, necessitating weekly reconfiguration and tuning. Accordingly, minimizing setup time proves essential in affording users with ample experimental time. We propose a trend-based soft actor-critic(TBSAC) beam control method with strong robustness, allowing the agents to be trained in a simulated environment and applied to the real accelerator directly with zero-shot. To validate the effectiveness of our method, two different typical beam control tasks were performed on China Accelerator Facility for Superheavy Elements (CAFe II) and a light particle injector(LPI) respectively. The orbit correction tasks were performed in three cryomodules in CAFe II seperately, the time required for tuning has been reduced to one-tenth of that needed by human experts, and the RMS values of the corrected orbit were all less than 1mm. The other transmission efficiency optimization task was conducted in the LPI, our agent successfully optimized the transmission efficiency of radio-frequency quadrupole(RFQ) to over $85\%$ within 2 minutes. The outcomes of these two experiments offer substantiation that our proposed TBSAC approach can efficiently and effectively accomplish beam commissioning tasks while upholding the same standard as skilled human experts. As such, our method exhibits potential for future applications in other accelerator commissioning fields.
Abstract:Existing research generally treats Chinese character as a minimum unit for representation. However, such Chinese character representation will suffer two bottlenecks: 1) Learning bottleneck, the learning cannot benefit from its rich internal features (e.g., radicals and strokes); and 2) Parameter bottleneck, each individual character has to be represented by a unique vector. In this paper, we introduce a novel representation method for Chinese characters to break the bottlenecks, namely StrokeNet, which represents a Chinese character by a Latinized stroke sequence (e.g., "ao1 (concave)" to "ajaie" and "tu1 (convex)" to "aeaqe"). Specifically, StrokeNet maps each stroke to a specific Latin character, thus allowing similar Chinese characters to have similar Latin representations. With the introduction of StrokeNet to neural machine translation (NMT), many powerful but not applicable techniques to non-Latin languages (e.g., shared subword vocabulary learning and ciphertext-based data augmentation) can now be perfectly implemented. Experiments on the widely-used NIST Chinese-English, WMT17 Chinese-English and IWSLT17 Japanese-English NMT tasks show that StrokeNet can provide a significant performance boost over the strong baselines with fewer model parameters, achieving 26.5 BLEU on the WMT17 Chinese-English task which is better than any previously reported results without using monolingual data. Code and scripts are freely available at https://github.com/zjwang21/StrokeNet.