Abstract:This paper introduces an integrated Bayesian model that combines line integral measurements and point values using Gaussian Process (GP). The proposed method leverages Gaussian Process Regression (GPR) to incorporate point values into 2D profiles and employs coordinate mapping to integrate magnetic flux information for 2D inversion. The average relative error of the reconstructed profile, using the integrated Bayesian tomography model with normalized magnetic flux, is as low as 3.60*10^(-4). Additionally, sensitivity tests were conducted on the number of grids, the standard deviation of synthetic diagnostic data, and noise levels, laying a solid foundation for the application of the model to experimental data. This work not only achieves accurate 2D inversion using the integrated Bayesian model but also provides a robust framework for decoupling pressure information from equilibrium reconstruction, thus making it possible to optimize equilibrium reconstruction using inversion results.
Abstract:This paper introduces a Physics-Informed model architecture that can be adapted to various backbone networks. The model incorporates physical information as additional input and is constrained by a Physics-Informed loss function. Experimental results demonstrate that the additional input of physical information substantially improve the model's ability with a increase in performance observed. Besides, the adoption of the Softplus activation function in the final two fully connected layers significantly enhances model performance. The incorporation of a Physics-Informed loss function has been shown to correct the model's predictions, bringing the back-projections closer to the actual inputs and reducing the errors associated with inversion algorithms. In this work, we have developed a Phantom Data Model to generate customized line integral diagnostic datasets and have also collected SXR diagnostic datasets from EAST and HL-2A. The code, models, and some datasets are publicly available at https://github.com/calledice/onion.