Zhejiang University, Hangzhou, China
Abstract:Object detection is a fundamental enabler for many real-time downstream applications such as autonomous driving, augmented reality and supply chain management. However, the algorithmic backbone of neural networks is brittle to imperceptible perturbations in the system inputs, which were generally known as misclassifying attacks. By targeting the real-time processing capability, a new class of latency attacks are reported recently. They exploit new attack surfaces in object detectors by creating a computational bottleneck in the post-processing module, that leads to cascading failure and puts the real-time downstream tasks at risks. In this work, we take an initial attempt to defend against this attack via background-attentive adversarial training that is also cognizant of the underlying hardware capabilities. We first draw system-level connections between latency attack and hardware capacity across heterogeneous GPU devices. Based on the particular adversarial behaviors, we utilize objectness loss as a proxy and build background attention into the adversarial training pipeline, and achieve a reasonable balance between clean and robust accuracy. The extensive experiments demonstrate the defense effectiveness of restoring real-time processing capability from $13$ FPS to $43$ FPS on Jetson Orin NX, with a better trade-off between the clean and robust accuracy.
Abstract:This paper introduces a Physics-Informed model architecture that can be adapted to various backbone networks. The model incorporates physical information as additional input and is constrained by a Physics-Informed loss function. Experimental results demonstrate that the additional input of physical information substantially improve the model's ability with a increase in performance observed. Besides, the adoption of the Softplus activation function in the final two fully connected layers significantly enhances model performance. The incorporation of a Physics-Informed loss function has been shown to correct the model's predictions, bringing the back-projections closer to the actual inputs and reducing the errors associated with inversion algorithms. In this work, we have developed a Phantom Data Model to generate customized line integral diagnostic datasets and have also collected SXR diagnostic datasets from EAST and HL-2A. The code, models, and some datasets are publicly available at https://github.com/calledice/onion.
Abstract:Federated Learning (FL), as a mainstream privacy-preserving machine learning paradigm, offers promising solutions for privacy-critical domains such as healthcare and finance. Although extensive efforts have been dedicated from both academia and industry to improve the vanilla FL, little work focuses on the data pricing mechanism. In contrast to the straightforward in/post-training pricing techniques, we study a more difficult problem of pre-training pricing without direct information from the learning process. We propose FLMarket that integrates a two-stage, auction-based pricing mechanism with a security protocol to address the utility-privacy conflict. Through comprehensive experiments, we show that the client selection according to FLMarket can achieve more than 10% higher accuracy in subsequent FL training compared to state-of-the-art methods. In addition, it outperforms the in-training baseline with more than 2% accuracy increase and 3x run-time speedup.
Abstract:Safety-critical scenarios are infrequent in natural driving environments but hold significant importance for the training and testing of autonomous driving systems. The prevailing approach involves generating safety-critical scenarios automatically in simulation by introducing adversarial adjustments to natural environments. These adjustments are often tailored to specific tested systems, thereby disregarding their transferability across different systems. In this paper, we propose AdvDiffuser, an adversarial framework for generating safety-critical driving scenarios through guided diffusion. By incorporating a diffusion model to capture plausible collective behaviors of background vehicles and a lightweight guide model to effectively handle adversarial scenarios, AdvDiffuser facilitates transferability. Experimental results on the nuScenes dataset demonstrate that AdvDiffuser, trained on offline driving logs, can be applied to various tested systems with minimal warm-up episode data and outperform other existing methods in terms of realism, diversity, and adversarial performance.
Abstract:Real-world environments require robots to continuously acquire new skills while retaining previously learned abilities, all without the need for clearly defined task boundaries. Storing all past data to prevent forgetting is impractical due to storage and privacy concerns. To address this, we propose a method that efficiently restores a robot's proficiency in previously learned tasks over its lifespan. Using an Episodic Memory (EM), our approach enables experience replay during training and retrieval during testing for local fine-tuning, allowing rapid adaptation to previously encountered problems without explicit task identifiers. Additionally, we introduce a selective weighting mechanism that emphasizes the most challenging segments of retrieved demonstrations, focusing local adaptation where it is most needed. This framework offers a scalable solution for lifelong learning in dynamic, task-unaware environments, combining retrieval-based adaptation with selective weighting to enhance robot performance in open-ended scenarios.
Abstract:Reinforcement learning-based quadruped robots excel across various terrains but still lack the ability to swim in water due to the complex underwater environment. This paper presents the development and evaluation of a data-driven hydrodynamic model for amphibious quadruped robots, aiming to enhance their adaptive capabilities in complex and dynamic underwater environments. The proposed model leverages Neural Ordinary Differential Equations (ODEs) combined with attention mechanisms to accurately process and interpret real-time sensor data. The model enables the quadruped robots to understand and predict complex environmental patterns, facilitating robust decision-making strategies. We harness real-time sensor data, capturing various environmental and internal state parameters to train and evaluate our model. A significant focus of our evaluation involves testing the quadruped robot's performance across different hydrodynamic conditions and assessing its capabilities at varying speeds and fluid dynamic conditions. The outcomes suggest that the model can effectively learn and adapt to varying conditions, enabling the prediction of force states and enhancing autonomous robotic behaviors in various practical scenarios.
Abstract:Following the advancements in text-guided image generation technology exemplified by Stable Diffusion, video generation is gaining increased attention in the academic community. However, relying solely on text guidance for video generation has serious limitations, as videos contain much richer content than images, especially in terms of motion. This information can hardly be adequately described with plain text. Fortunately, in computer vision, various visual representations can serve as additional control signals to guide generation. With the help of these signals, video generation can be controlled in finer detail, allowing for greater flexibility for different applications. Integrating various controls, however, is nontrivial. In this paper, we propose a universal framework called EasyControl. By propagating and injecting condition features through condition adapters, our method enables users to control video generation with a single condition map. With our framework, various conditions including raw pixels, depth, HED, etc., can be integrated into different Unet-based pre-trained video diffusion models at a low practical cost. We conduct comprehensive experiments on public datasets, and both quantitative and qualitative results indicate that our method outperforms state-of-the-art methods. EasyControl significantly improves various evaluation metrics across multiple validation datasets compared to previous works. Specifically, for the sketch-to-video generation task, EasyControl achieves an improvement of 152.0 on FVD and 19.9 on IS, respectively, in UCF101 compared with VideoComposer. For fidelity, our model demonstrates powerful image retention ability, resulting in high FVD and IS in UCF101 and MSR-VTT compared to other image-to-video models.
Abstract:To address the limitation in multimodal emotion recognition (MER) performance arising from inter-modal information fusion, we propose a novel MER framework based on multitask learning where fusion occurs after alignment, called Foal-Net. The framework is designed to enhance the effectiveness of modality fusion and includes two auxiliary tasks: audio-video emotion alignment (AVEL) and cross-modal emotion label matching (MEM). First, AVEL achieves alignment of emotional information in audio-video representations through contrastive learning. Then, a modal fusion network integrates the aligned features. Meanwhile, MEM assesses whether the emotions of the current sample pair are the same, providing assistance for modal information fusion and guiding the model to focus more on emotional information. The experimental results conducted on IEMOCAP corpus show that Foal-Net outperforms the state-of-the-art methods and emotion alignment is necessary before modal fusion.
Abstract:Multi-Label Text Classification (MLTC) is a practical yet challenging task that involves assigning multiple non-exclusive labels to each document. Previous studies primarily focus on capturing label correlations to assist label prediction by introducing special labeling schemes, designing specific model structures, or adding auxiliary tasks. Recently, the $k$ Nearest Neighbor ($k$NN) framework has shown promise by retrieving labeled samples as references to mine label co-occurrence information in the embedding space. However, two critical biases, namely embedding alignment bias and confidence estimation bias, are often overlooked, adversely affecting prediction performance. In this paper, we introduce a DEbiased Nearest Neighbors (DENN) framework for MLTC, specifically designed to mitigate these biases. To address embedding alignment bias, we propose a debiased contrastive learning strategy, enhancing neighbor consistency on label co-occurrence. For confidence estimation bias, we present a debiased confidence estimation strategy, improving the adaptive combination of predictions from $k$NN and inductive binary classifications. Extensive experiments conducted on four public benchmark datasets (i.e., AAPD, RCV1-V2, Amazon-531, and EUR-LEX57K) showcase the effectiveness of our proposed method. Besides, our method does not introduce any extra parameters.
Abstract:The public sharing of user information opens the door for adversaries to infer private data, leading to privacy breaches and facilitating malicious activities. While numerous studies have concentrated on privacy leakage via public user attributes, the threats associated with the exposure of user relationships, particularly through network structure, are often neglected. This study aims to fill this critical gap by advancing the understanding and protection against privacy risks emanating from network structure, moving beyond direct connections with neighbors to include the broader implications of indirect network structural patterns. To achieve this, we first investigate the problem of Graph Privacy Leakage via Structure (GPS), and introduce a novel measure, the Generalized Homophily Ratio, to quantify the various mechanisms contributing to privacy breach risks in GPS. Based on this insight, we develop a novel graph private attribute inference attack, which acts as a pivotal tool for evaluating the potential for privacy leakage through network structures under worst-case scenarios. To protect users' private data from such vulnerabilities, we propose a graph data publishing method incorporating a learnable graph sampling technique, effectively transforming the original graph into a privacy-preserving version. Extensive experiments demonstrate that our attack model poses a significant threat to user privacy, and our graph data publishing method successfully achieves the optimal privacy-utility trade-off compared to baselines.