Zhejiang University, Hangzhou, China
Abstract:Single-Image Super-Resolution (SISR) plays a pivotal role in enhancing the accuracy and reliability of measurement systems, which are integral to various vision-based instrumentation and measurement applications. These systems often require clear and detailed images for precise object detection and recognition. However, images captured by visual measurement tools frequently suffer from degradation, including blurring and loss of detail, which can impede measurement accuracy.As a potential remedy, we in this paper propose a Semantic-Guided Global-Local Collaborative Network (SGGLC-Net) for lightweight SISR. Our SGGLC-Net leverages semantic priors extracted from a pre-trained model to guide the super-resolution process, enhancing image detail quality effectively. Specifically,we propose a Semantic Guidance Module that seamlessly integrates the semantic priors into the super-resolution network, enabling the network to more adeptly capture and utilize semantic priors, thereby enhancing image details. To further explore both local and non-local interactions for improved detail rendition,we propose a Global-Local Collaborative Module, which features three Global and Local Detail Enhancement Modules, as well as a Hybrid Attention Mechanism to work together to efficiently learn more useful features. Our extensive experiments show that SGGLC-Net achieves competitive PSNR and SSIM values across multiple benchmark datasets, demonstrating higher performance with the multi-adds reduction of 12.81G compared to state-of-the-art lightweight super-resolution approaches. These improvements underscore the potential of our approach to enhance the precision and effectiveness of visual measurement systems. Codes are at https://github.com/fanamber831/SGGLC-Net.
Abstract:High-fidelity imaging is crucial for the successful safety supervision and intelligent deployment of vision-based measurement systems (VBMS). It ensures high-quality imaging in VBMS, which is fundamental for reliable visual measurement and analysis. However, imaging quality can be significantly impaired by adverse weather conditions, particularly rain, leading to blurred images and reduced contrast. Such impairments increase the risk of inaccurate evaluations and misinterpretations in VBMS. To address these limitations, we propose an Expectation Maximization Reconstruction Transformer (EMResformer) for single image rain streak removal. The EMResformer retains the key self-attention values for feature aggregation, enhancing local features to produce superior image reconstruction. Specifically, we propose an Expectation Maximization Block seamlessly integrated into the single image rain streak removal network, enhancing its ability to eliminate superfluous information and restore a cleaner background image. Additionally, to further enhance local information for improved detail rendition, we introduce a Local Model Residual Block, which integrates two local model blocks along with a sequence of convolutions and activation functions. This integration synergistically facilitates the extraction of more pertinent features for enhanced single image rain streak removal. Extensive experiments validate that our proposed EMResformer surpasses current state-of-the-art single image rain streak removal methods on both synthetic and real-world datasets, achieving an improved balance between model complexity and single image deraining performance. Furthermore, we evaluate the effectiveness of our method in VBMS scenarios, demonstrating that high-quality imaging significantly improves the accuracy and reliability of VBMS tasks.
Abstract:Three-dimensional reconstruction of the spine under weight-bearing conditions from biplanar X-ray images is of great importance for the clinical assessment of spinal diseases. However, the current fully automated reconstruction methods have low accuracy and fail to meet the clinical application standards. This study developed and validated a fully automated method for high-accuracy 3D reconstruction of the lumbar spine from biplanar X-ray images. The method involves lumbar decomposition and landmark detection from the raw X-ray images, followed by a deformable model and landmark-weighted 2D-3D registration approach. The reconstruction accuracy was validated by the gold standard obtained through the registration of CT-segmented vertebral models with the biplanar X-ray images. The proposed method achieved a 3D reconstruction accuracy of 0.80 mm, representing a significant improvement over the mainstream approaches. This study will contribute to the clinical diagnosis of lumbar in weight-bearing positions.
Abstract:We propose Intra and Inter Parser-Prompted Transformers (PPTformer) that explore useful features from visual foundation models for image restoration. Specifically, PPTformer contains two parts: an Image Restoration Network (IRNet) for restoring images from degraded observations and a Parser-Prompted Feature Generation Network (PPFGNet) for providing IRNet with reliable parser information to boost restoration. To enhance the integration of the parser within IRNet, we propose Intra Parser-Prompted Attention (IntraPPA) and Inter Parser-Prompted Attention (InterPPA) to implicitly and explicitly learn useful parser features to facilitate restoration. The IntraPPA re-considers cross attention between parser and restoration features, enabling implicit perception of the parser from a long-range and intra-layer perspective. Conversely, the InterPPA initially fuses restoration features with those of the parser, followed by formulating these fused features within an attention mechanism to explicitly perceive parser information. Further, we propose a parser-prompted feed-forward network to guide restoration within pixel-wise gating modulation. Experimental results show that PPTformer achieves state-of-the-art performance on image deraining, defocus deblurring, desnowing, and low-light enhancement.
Abstract:The rapid advancement of large Vision-Language Models (VLMs) has raised significant safety concerns, particularly regarding their vulnerability to jailbreak attacks. While existing research primarily focuses on VLMs' susceptibility to harmful instructions, this work identifies a critical yet overlooked vulnerability: current alignment mechanisms often fail to address the risks posed by toxic text continuation tasks. To investigate this issue, we propose a novel Red Team Diffuser (RTD) framework, which leverages reinforcement learning to generate red team images that effectively induce highly toxic continuations from target black-box VLMs. The RTD pipeline begins with a greedy search for high-quality image prompts that maximize the toxicity of VLM-generated sentence continuations, guided by a Large Language Model (LLM). These prompts are then used as input for the reinforcement fine-tuning of a diffusion model, which employs toxicity and alignment rewards to further amplify harmful outputs. Experimental results demonstrate the effectiveness of RTD, increasing the toxicity rate of LLaVA outputs by 10.69% on the original attack set and 8.91% on a hold-out set. Moreover, RTD exhibits strong cross-model transferability, raising the toxicity rate by 5.1% on Gemini and 26.83% on LLaMA. These findings reveal significant deficiencies in existing alignment strategies, particularly their inability to prevent harmful continuations. Our work underscores the urgent need for more robust and adaptive alignment mechanisms to ensure the safe deployment of VLMs in real-world applications.
Abstract:We implement a specialized version of our SpeckleNN model for real-time speckle pattern classification in X-ray Single-Particle Imaging (SPI) using the SLAC Neural Network Library (SNL) on an FPGA. This hardware is optimized for inference near detectors in high-throughput X-ray free-electron laser (XFEL) facilities like the Linac Coherent Light Source (LCLS). To fit FPGA constraints, we optimized SpeckleNN, reducing parameters from 5.6M to 64.6K (98.8% reduction) with 90% accuracy. We also compressed the latent space from 128 to 50 dimensions. Deployed on a KCU1500 FPGA, the model used 71% of DSPs, 75% of LUTs, and 48% of FFs, with an average power consumption of 9.4W. The FPGA achieved 45.015us inference latency at 200 MHz. On an NVIDIA A100 GPU, the same inference consumed ~73W and had a 400us latency. Our FPGA version achieved an 8.9x speedup and 7.8x power reduction over the GPU. Key advancements include model specialization and dynamic weight loading through SNL, eliminating time-consuming FPGA re-synthesis for fast, continuous deployment of (re)trained models. These innovations enable real-time adaptive classification and efficient speckle pattern vetoing, making SpeckleNN ideal for XFEL facilities. This implementation accelerates SPI experiments and enhances adaptability to evolving conditions.
Abstract:Large language models (LLMs) have wide applications in the field of natural language processing(NLP), such as GPT-4 and Llama. However, with the exponential growth of model parameter sizes, LLMs bring significant resource overheads. Low-bit quantization, as a key technique, reduces memory usage and computational demands by decreasing the bit-width of model parameters, activations, and gradients. Previous quantization methods for LLMs have largely employed Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT). PTQ does not require any retraining of the original model, while QAT involves optimizing precision during training to achieve the best quantization parameters. The BitNet team proposed a radically different approach, where quantization is performed from the start of model training, utilizing low-precision binary weights during the training process. This approach has led to the emergence of many binary quantization techniques for large language models. This paper provides a comprehensive review of these binary quantization techniques. Specifically, we will introduce binary quantization techniques in deep neural networks and further explore their application to LLMs, reviewing their various contributions, implementations, and applications.
Abstract:The Web of Things (WoT) enhances interoperability across web-based and ubiquitous computing platforms while complementing existing IoT standards. The multimodal Federated Learning (FL) paradigm has been introduced to enhance WoT by enabling the fusion of multi-source mobile sensing data while preserving privacy. However, a key challenge in mobile sensing systems using multimodal FL is modality incompleteness, where some modalities may be unavailable or only partially captured, potentially degrading the system's performance and reliability. Current multimodal FL frameworks typically train multiple unimodal FL subsystems or apply interpolation techniques on the node side to approximate missing modalities. However, these approaches overlook the shared latent feature space among incomplete modalities across different nodes and fail to discriminate against low-quality nodes. To address this gap, we present FedMobile, a new knowledge contribution-aware multimodal FL framework designed for robust learning despite missing modalities. FedMobile prioritizes local-to-global knowledge transfer, leveraging cross-node multimodal feature information to reconstruct missing features. It also enhances system performance and resilience to modality heterogeneity through rigorous node contribution assessments and knowledge contribution-aware aggregation rules. Empirical evaluations on five widely recognized multimodal benchmark datasets demonstrate that FedMobile maintains robust learning even when up to 90% of modality information is missing or when data from two modalities are randomly missing, outperforming state-of-the-art baselines.
Abstract:Recent advances in conditional diffusion models have shown promise for generating realistic TalkingFace videos, yet challenges persist in achieving consistent head movement, synchronized facial expressions, and accurate lip synchronization over extended generations. To address these, we introduce the \textbf{M}otion-priors \textbf{C}onditional \textbf{D}iffusion \textbf{M}odel (\textbf{MCDM}), which utilizes both archived and current clip motion priors to enhance motion prediction and ensure temporal consistency. The model consists of three key elements: (1) an archived-clip motion-prior that incorporates historical frames and a reference frame to preserve identity and context; (2) a present-clip motion-prior diffusion model that captures multimodal causality for accurate predictions of head movements, lip sync, and expressions; and (3) a memory-efficient temporal attention mechanism that mitigates error accumulation by dynamically storing and updating motion features. We also release the \textbf{TalkingFace-Wild} dataset, a multilingual collection of over 200 hours of footage across 10 languages. Experimental results demonstrate the effectiveness of MCDM in maintaining identity and motion continuity for long-term TalkingFace generation. Code, models, and datasets will be publicly available.
Abstract:This paper introduces an integrated Bayesian model that combines line integral measurements and point values using Gaussian Process (GP). The proposed method leverages Gaussian Process Regression (GPR) to incorporate point values into 2D profiles and employs coordinate mapping to integrate magnetic flux information for 2D inversion. The average relative error of the reconstructed profile, using the integrated Bayesian tomography model with normalized magnetic flux, is as low as 3.60*10^(-4). Additionally, sensitivity tests were conducted on the number of grids, the standard deviation of synthetic diagnostic data, and noise levels, laying a solid foundation for the application of the model to experimental data. This work not only achieves accurate 2D inversion using the integrated Bayesian model but also provides a robust framework for decoupling pressure information from equilibrium reconstruction, thus making it possible to optimize equilibrium reconstruction using inversion results.