Abstract:Recently, point clouds have been widely used in computer vision, whereas their collection is time-consuming and expensive. As such, point cloud datasets are the valuable intellectual property of their owners and deserve protection. To detect and prevent unauthorized use of these datasets, especially for commercial or open-sourced ones that cannot be sold again or used commercially without permission, we intend to identify whether a suspicious third-party model is trained on our protected dataset under the black-box setting. We achieve this goal by designing a scalable clean-label backdoor-based dataset watermark for point clouds that ensures both effectiveness and stealthiness. Unlike existing clean-label watermark schemes, which are susceptible to the number of categories, our method could watermark samples from all classes instead of only from the target one. Accordingly, it can still preserve high effectiveness even on large-scale datasets with many classes. Specifically, we perturb selected point clouds with non-target categories in both shape-wise and point-wise manners before inserting trigger patterns without changing their labels. The features of perturbed samples are similar to those of benign samples from the target class. As such, models trained on the watermarked dataset will have a distinctive yet stealthy backdoor behavior, i.e., misclassifying samples from the target class whenever triggers appear, since the trained DNNs will treat the inserted trigger pattern as a signal to deny predicting the target label. We also design a hypothesis-test-guided dataset ownership verification based on the proposed watermark. Extensive experiments on benchmark datasets are conducted, verifying the effectiveness of our method and its resistance to potential removal methods.
Abstract:Ownership verification is currently the most critical and widely adopted post-hoc method to safeguard model copyright. In general, model owners exploit it to identify whether a given suspicious third-party model is stolen from them by examining whether it has particular properties `inherited' from their released models. Currently, backdoor-based model watermarks are the primary and cutting-edge methods to implant such properties in the released models. However, backdoor-based methods have two fatal drawbacks, including harmfulness and ambiguity. The former indicates that they introduce maliciously controllable misclassification behaviors ($i.e.$, backdoor) to the watermarked released models. The latter denotes that malicious users can easily pass the verification by finding other misclassified samples, leading to ownership ambiguity. In this paper, we argue that both limitations stem from the `zero-bit' nature of existing watermarking schemes, where they exploit the status ($i.e.$, misclassified) of predictions for verification. Motivated by this understanding, we design a new watermarking paradigm, $i.e.$, Explanation as a Watermark (EaaW), that implants verification behaviors into the explanation of feature attribution instead of model predictions. Specifically, EaaW embeds a `multi-bit' watermark into the feature attribution explanation of specific trigger samples without changing the original prediction. We correspondingly design the watermark embedding and extraction algorithms inspired by explainable artificial intelligence. In particular, our approach can be used for different tasks ($e.g.$, image classification and text generation). Extensive experiments verify the effectiveness and harmlessness of our EaaW and its resistance to potential attacks.
Abstract:This paper addresses the challenge of achieving information-theoretic security in semantic communication (SeCom) over a wiretap channel, where a legitimate receiver coexists with an eavesdropper experiencing a poorer channel condition. Despite previous efforts to secure SeCom against eavesdroppers, achieving information-theoretic security in such schemes remains an open issue. In this work, we propose a secure digital SeCom approach based on superposition codes, aiming to attain nearly information-theoretic security. Our proposed method involves associating semantic information with satellite constellation points within a double-layered constellation map, where cloud center constellation points are randomly selected. By carefully allocating power between these two layers of constellation, we ensure that the symbol error probability (SEP) of the eavesdropper decoding satellite constellation points is nearly equivalent to random guessing, while maintaining a low SEP for the legitimate receiver to successfully decode the semantic information. Simulation results showcase that the Peak Signal-to-Noise Ratio (PSNR) and Mean Squared Error (MSE) for the eavesdropper's reconstructed data, using our proposed method, can range from decoding Gaussian-distributed random noise to approaching the variance of the data. This validates the ability of our method to achieve nearly information-theoretic security, demonstrating superior data security compared to benchmark methods.
Abstract:We consider multi-user semantic communications over broadcast channels. While most existing works consider that each receiver requires either the same or independent semantic information, this paper explores the scenario where the semantic information desired by different receivers is different but correlated. In particular, we investigate semantic communications over Gaussian broadcast channels where the transmitter has a common observable source but the receivers wish to recover hierarchical semantic information in adaptation to their channel conditions. Inspired by the capacity achieving property of superposition codes, we propose a deep learning based superposition coded modulation (DeepSCM) scheme. Specifically, the hierarchical semantic information is first extracted and encoded into basic and enhanced feature vectors. A linear minimum mean square error (LMMSE) decorrelator is then developed to obtain a refinement from the enhanced features that is uncorrelated with the basic features. Finally, the basic features and their refinement are superposed for broadcasting after probabilistic modulation. Experiments are conducted for two-receiver image semantic broadcasting with coarse and fine classification as hierarchical semantic tasks. DeepSCM outperforms the benchmarking coded-modulation scheme without a superposition structure, especially with large channel disparity and high order modulation. It also approaches the performance upperbound as if there were only one receiver.
Abstract:Semantic communications have emerged as a new paradigm for improving communication efficiency by transmitting the semantic information of a source message that is most relevant to a desired task at the receiver. Most existing approaches typically utilize neural networks (NNs) to design end-to-end semantic communication systems, where NN-based semantic encoders output continuously distributed signals to be sent directly to the channel in an analog communication fashion. In this work, we propose a joint coding-modulation framework for digital semantic communications by using variational autoencoder (VAE). Our approach learns the transition probability from source data to discrete constellation symbols, thereby avoiding the non-differentiability problem of digital modulation. Meanwhile, by jointly designing the coding and modulation process together, we can match the obtained modulation strategy with the operating channel condition. We also derive a matching loss function with information-theoretic meaning for end-to-end training. Experiments conducted on image semantic communication validate that our proposed joint coding-modulation framework outperforms separate design of semantic coding and modulation under various channel conditions, transmission rates, and modulation orders. Furthermore, its performance gap to analog semantic communication reduces as the modulation order increases while enjoying the hardware implementation convenience.
Abstract:Federated learning (FL) allows multiple participants to collaboratively build deep learning (DL) models without directly sharing data. Consequently, the issue of copyright protection in FL becomes important since unreliable participants may gain access to the jointly trained model. Application of homomorphic encryption (HE) in secure FL framework prevents the central server from accessing plaintext models. Thus, it is no longer feasible to embed the watermark at the central server using existing watermarking schemes. In this paper, we propose a novel client-side FL watermarking scheme to tackle the copyright protection issue in secure FL with HE. To our best knowledge, it is the first scheme to embed the watermark to models under the Secure FL environment. We design a black-box watermarking scheme based on client-side backdooring to embed a pre-designed trigger set into an FL model by a gradient-enhanced embedding method. Additionally, we propose a trigger set construction mechanism to ensure the watermark cannot be forged. Experimental results demonstrate that our proposed scheme delivers outstanding protection performance and robustness against various watermark removal attacks and ambiguity attack.
Abstract:Copyright protection of the Federated Learning (FL) model has become a major concern since malicious clients in FL can stealthily distribute or sell the FL model to other parties. In order to prevent such misbehavior, one must be able to catch the culprit by investigating trace evidence from the model in question. In this paper, we propose FedTracker, the first FL model protection framework that, on one hand, employs global watermarks to verify ownerships of the global model; and on the other hand, embed unique local fingerprints into respective local models to facilitate tracing the model back to the culprit. Furthermore, FedTracker introduces the intuition of Continual Learning (CL) into watermark embedding, and proposes a CL-based watermark mechanism to improve fidelity. Experimental results show that the proposed FedTracker is effective in ownership verification, traceability, fidelity, and robustness.
Abstract:In learning-based semantic communications, neural networks have replaced different building blocks in traditional communication systems. However, the digital modulation still remains a challenge for neural networks. The intrinsic mechanism of neural network based digital modulation is mapping continuous output of the neural network encoder into discrete constellation symbols, which is a non-differentiable function that cannot be trained with existing gradient descend algorithms. To overcome this challenge, in this paper we develop a joint coding-modulation scheme for digital semantic communications with BPSK modulation. In our method, the neural network outputs the likelihood of each constellation point, instead of having a concrete mapping. A random code rather than a deterministic code is hence used, which preserves more information for the symbols with a close likelihood on each constellation point. The joint coding-modulation design can match the modulation process with channel states, and hence improve the performance of digital semantic communications. Experiment results show that our method outperforms existing digital modulation methods in semantic communications over a wide range of SNR, and outperforms neural network based analog modulation method in low SNR regime.
Abstract:Existing deep learning-enabled semantic communication systems often rely on shared background knowledge between the transmitter and receiver that includes empirical data and their associated semantic information. In practice, the semantic information is defined by the pragmatic task of the receiver and cannot be known to the transmitter. The actual observable data at the transmitter can also have non-identical distribution with the empirical data in the shared background knowledge library. To address these practical issues, this paper proposes a new neural network-based semantic communication system for image transmission, where the task is unaware at the transmitter and the data environment is dynamic. The system consists of two main parts, namely the semantic extraction (SE) network and the data adaptation (DA) network. The SE network learns how to extract the semantic information using a receiver-leading training process. By using domain adaptation technique from transfer learning, the DA network learns how to convert the data observed into a similar form of the empirical data that the SE network can process without re-training. Numerical experiments show that the proposed method can be adaptive to observable datasets while keeping high performance in terms of both data recovery and task execution. The codes are available on https://github.com/SJTU-mxtao/Semantic-Communication-Systems.
Abstract:A new source model, which consists of an intrinsic state part and an extrinsic observation part, is proposed and its information-theoretic characterization, namely its rate-distortion function, is defined and analyzed. Such a source model is motivated by the recent surge of interest in the semantic aspect of information: the intrinsic state corresponds to the semantic feature of the source, which in general is not observable but can only be inferred from the extrinsic observation. There are two distortion measures, one between the intrinsic state and its reproduction, and the other between the extrinsic observation and its reproduction. Under a given code rate, the tradeoff between these two distortion measures is characterized by the rate-distortion function, which is solved via the indirect rate-distortion theory and is termed as the semantic rate-distortion function of the source. As an application of the general model and its analysis, the case of Gaussian extrinsic observation is studied, assuming a linear relationship between the intrinsic state and the extrinsic observation, under a quadratic distortion structure. The semantic rate-distortion function is shown to be the solution of a convex programming programming with respect to an error covariance matrix, and a reverse water-filling type of solution is provided when the model further satisfies a diagonalizability condition.