Abstract:Large language models (LLMs) have shown remarkable effectiveness across various domains, with data augmentation methods utilizing GPT for synthetic data generation becoming prevalent. However, the quality and utility of augmented data remain questionable, and current methods lack clear metrics for evaluating data characteristics. To address these challenges, we propose ResoFilter, a novel method that integrates models, data, and tasks to refine datasets. ResoFilter leverages the fine-tuning process to obtain Data-Parameter features for data selection, offering improved interpretability by representing data characteristics through model weights. Our experiments demonstrate that ResoFilter achieves comparable results to full-scale fine-tuning using only half the data in mathematical tasks and exhibits strong generalization across different models and domains. This method provides valuable insights for constructing synthetic datasets and evaluating high-quality data, offering a promising solution for enhancing data augmentation techniques and improving training dataset quality for LLMs. For reproducibility, we will release our code and data upon acceptance.
Abstract:Large language models (LLMs) have shown remarkable effectiveness across various domains, with data augmentation methods utilizing GPT for synthetic data generation becoming prevalent. However, the quality and utility of augmented data remain questionable, and current methods lack clear metrics for evaluating data characteristics. To address these challenges, we propose ResoFilter, a novel method that integrates models, data, and tasks to refine datasets. ResoFilter leverages the fine-tuning process to obtain Data-Parameter features for data selection, offering improved interpretability by representing data characteristics through model weights. Our experiments demonstrate that ResoFilter achieves comparable results to full-scale fine-tuning using only half the data in mathematical tasks and exhibits strong generalization across different models and domains. This method provides valuable insights for constructing synthetic datasets and evaluating high-quality data, offering a promising solution for enhancing data augmentation techniques and improving training dataset quality for LLMs. For reproducibility, we will release our code and data upon acceptance.
Abstract:Federated learning (FL) has emerged as a prominent approach for collaborative training of machine learning models across distributed clients while preserving data privacy. However, the quest to balance acceleration and stability becomes a significant challenge in FL, especially on the client-side. In this paper, we introduce FedCAda, an innovative federated client adaptive algorithm designed to tackle this challenge. FedCAda leverages the Adam algorithm to adjust the correction process of the first moment estimate $m$ and the second moment estimate $v$ on the client-side and aggregate adaptive algorithm parameters on the server-side, aiming to accelerate convergence speed and communication efficiency while ensuring stability and performance. Additionally, we investigate several algorithms incorporating different adjustment functions. This comparative analysis revealed that due to the limited information contained within client models from other clients during the initial stages of federated learning, more substantial constraints need to be imposed on the parameters of the adaptive algorithm. As federated learning progresses and clients gather more global information, FedCAda gradually diminishes the impact on adaptive parameters. These findings provide insights for enhancing the robustness and efficiency of algorithmic improvements. Through extensive experiments on computer vision (CV) and natural language processing (NLP) datasets, we demonstrate that FedCAda outperforms the state-of-the-art methods in terms of adaptability, convergence, stability, and overall performance. This work contributes to adaptive algorithms for federated learning, encouraging further exploration.
Abstract:Addressing the issue of hallucinations and outdated knowledge in large language models is critical for their reliable application. Model Editing presents a promising avenue for mitigating these challenges in a cost-effective manner. However, existing methods often suffer from unsatisfactory generalization and unintended effects on unrelated samples. To overcome these limitations, we introduce a novel approach: Scalable Model Editing via Customized Expert Networks (SCEN), which is a two-stage continuous training paradigm. Specifically, in the first stage, we train lightweight expert networks individually for each piece of knowledge that needs to be updated. Subsequently, we train a corresponding neuron for each expert to control the activation state of that expert. Our experiments on two different sizes of open-source large language models, the Llama2 7B and 13B, achieve state-of-the-art results compared to existing mainstream Model Editing methods. Our code is available at https: //github.com/TAL-auroraX/SCEN
Abstract:We take the classic facility location problem and consider a variation, in which each agent's individual cost function is equal to their distance from the facility multiplied by a scaling factor which is determined by the facility placement. In addition to the general class of continuous scaling functions, we also provide results for piecewise linear scaling functions which can effectively approximate or model the scaling of many real world scenarios. We focus on the objectives of total and maximum cost, describing the computation of the optimal solution. We then move to the approximate mechanism design setting, observing that the agents' preferences may no longer be single-peaked. Consequently, we characterize the conditions on scaling functions which ensure that agents have single-peaked preferences. Under these conditions, we find results on the total and maximum cost approximation ratios achievable by strategyproof and anonymous mechanisms.
Abstract:Video-based facial affect analysis has recently attracted increasing attention owing to its critical role in human-computer interaction. Previous studies mainly focus on developing various deep learning architectures and training them in a fully supervised manner. Although significant progress has been achieved by these supervised methods, the longstanding lack of large-scale high-quality labeled data severely hinders their further improvements. Motivated by the recent success of self-supervised learning in computer vision, this paper introduces a self-supervised approach, termed Self-supervised Video Facial Affect Perceiver (SVFAP), to address the dilemma faced by supervised methods. Specifically, SVFAP leverages masked facial video autoencoding to perform self-supervised pre-training on massive unlabeled facial videos. Considering that large spatiotemporal redundancy exists in facial videos, we propose a novel temporal pyramid and spatial bottleneck Transformer as the encoder of SVFAP, which not only enjoys low computational cost but also achieves excellent performance. To verify the effectiveness of our method, we conduct experiments on nine datasets spanning three downstream tasks, including dynamic facial expression recognition, dimensional emotion recognition, and personality recognition. Comprehensive results demonstrate that SVFAP can learn powerful affect-related representations via large-scale self-supervised pre-training and it significantly outperforms previous state-of-the-art methods on all datasets. Codes will be available at https://github.com/sunlicai/SVFAP.
Abstract:Graph neural networks operate on graph-structured data via exchanging messages along edges. One limitation of this message passing paradigm is the over-squashing problem. Over-squashing occurs when messages from a node's expanded receptive field are compressed into fixed-size vectors, potentially causing information loss. To address this issue, recent works have explored using expander graphs, which are highly-connected sparse graphs with low diameters, to perform message passing. However, current methods on expander graph propagation only consider pair-wise interactions, ignoring higher-order structures in complex data. To explore the benefits of capturing these higher-order correlations while still leveraging expander graphs, we introduce higher-order expander graph propagation. We propose two methods for constructing bipartite expanders and evaluate their performance on both synthetic and real-world datasets.
Abstract:Vertical Federated Learning (VFL) has emerged as a collaborative training paradigm that allows participants with different features of the same group of users to accomplish cooperative training without exposing their raw data or model parameters. VFL has gained significant attention for its research potential and real-world applications in recent years, but still faces substantial challenges, such as in defending various kinds of data inference and backdoor attacks. Moreover, most of existing VFL projects are industry-facing and not easily used for keeping track of the current research progress. To address this need, we present an extensible and lightweight VFL framework VFLAIR (available at https://github.com/FLAIR-THU/VFLAIR), which supports VFL training with a variety of models, datasets and protocols, along with standardized modules for comprehensive evaluations of attacks and defense strategies. We also benchmark 11 attacks and 8 defenses performance under different communication and model partition settings and draw concrete insights and recommendations on the choice of defense strategies for different practical VFL deployment scenario.
Abstract:With the emergence of neural radiance fields (NeRFs), view synthesis quality has reached an unprecedented level. Compared to traditional mesh-based assets, this volumetric representation is more powerful in expressing scene geometry but inevitably suffers from high rendering costs and can hardly be involved in further processes like editing, posing significant difficulties in combination with the existing graphics pipeline. In this paper, we present a hybrid volume-mesh representation, VMesh, which depicts an object with a textured mesh along with an auxiliary sparse volume. VMesh retains the advantages of mesh-based assets, such as efficient rendering, compact storage, and easy editing, while also incorporating the ability to represent subtle geometric structures provided by the volumetric counterpart. VMesh can be obtained from multi-view images of an object and renders at 2K 60FPS on common consumer devices with high fidelity, unleashing new opportunities for real-time immersive applications.
Abstract:Seismic acquisition footprints appear as stably faint and dim structures and emerge fully spatially coherent, causing inevitable damage to useful signals during the suppression process. Various footprint removal methods, including filtering and sparse representation (SR), have been reported to attain promising results for surmounting this challenge. However, these methods, e.g., SR, rely solely on the handcrafted image priors of useful signals, which is sometimes an unreasonable demand if complex geological structures are contained in the given seismic data. As an alternative, this article proposes a footprint removal network (dubbed FR-Net) for the unsupervised suppression of acquired footprints without any assumptions regarding valuable signals. The key to the FR-Net is to design a unidirectional total variation (UTV) model for footprint acquisition according to the intrinsically directional property of noise. By strongly regularizing a deep convolutional autoencoder (DCAE) using the UTV model, our FR-Net transforms the DCAE from an entirely data-driven model to a \textcolor{black}{prior-augmented} approach, inheriting the superiority of the DCAE and our footprint model. Subsequently, the complete separation of the footprint noise and useful signals is projected in an unsupervised manner, specifically by optimizing the FR-Net via the backpropagation (BP) algorithm. We provide qualitative and quantitative evaluations conducted on three synthetic and field datasets, demonstrating that our FR-Net surpasses the previous state-of-the-art (SOTA) methods.