Abstract:During the process of driving, humans usually rely on multiple senses to gather information and make decisions. Analogously, in order to achieve embodied intelligence in autonomous driving, it is essential to integrate multidimensional sensory information in order to facilitate interaction with the environment. However, the current multi-modal fusion sensing schemes often neglect these additional sensory inputs, hindering the realization of fully autonomous driving. This paper considers multi-sensory information and proposes a multi-modal interactive perception dataset named MIPD, enabling expanding the current autonomous driving algorithm framework, for supporting the research on embodied intelligent driving. In addition to the conventional camera, lidar, and 4D radar data, our dataset incorporates multiple sensor inputs including sound, light intensity, vibration intensity and vehicle speed to enrich the dataset comprehensiveness. Comprising 126 consecutive sequences, many exceeding twenty seconds, MIPD features over 8,500 meticulously synchronized and annotated frames. Moreover, it encompasses many challenging scenarios, covering various road and lighting conditions. The dataset has undergone thorough experimental validation, producing valuable insights for the exploration of next-generation autonomous driving frameworks.
Abstract:Constantly discovering novel concepts is crucial in evolving environments. This paper explores the underexplored task of Continual Generalized Category Discovery (C-GCD), which aims to incrementally discover new classes from unlabeled data while maintaining the ability to recognize previously learned classes. Although several settings are proposed to study the C-GCD task, they have limitations that do not reflect real-world scenarios. We thus study a more practical C-GCD setting, which includes more new classes to be discovered over a longer period, without storing samples of past classes. In C-GCD, the model is initially trained on labeled data of known classes, followed by multiple incremental stages where the model is fed with unlabeled data containing both old and new classes. The core challenge involves two conflicting objectives: discover new classes and prevent forgetting old ones. We delve into the conflicts and identify that models are susceptible to prediction bias and hardness bias. To address these issues, we introduce a debiased learning framework, namely Happy, characterized by Hardness-aware prototype sampling and soft entropy regularization. For the prediction bias, we first introduce clustering-guided initialization to provide robust features. In addition, we propose soft entropy regularization to assign appropriate probabilities to new classes, which can significantly enhance the clustering performance of new classes. For the harness bias, we present the hardness-aware prototype sampling, which can effectively reduce the forgetting issue for previously seen classes, especially for difficult classes. Experimental results demonstrate our method proficiently manages the conflicts of C-GCD and achieves remarkable performance across various datasets, e.g., 7.5% overall gains on ImageNet-100. Our code is publicly available at https://github.com/mashijie1028/Happy-CGCD.
Abstract:Although Vision Transformers (ViTs) have recently advanced computer vision tasks significantly, an important real-world problem was overlooked: adapting to variable input resolutions. Typically, images are resized to a fixed resolution, such as 224x224, for efficiency during training and inference. However, uniform input size conflicts with real-world scenarios where images naturally vary in resolution. Modifying the preset resolution of a model may severely degrade the performance. In this work, we propose to enhance the model adaptability to resolution variation by optimizing the patch embedding. The proposed method, called Multi-Scale Patch Embedding (MSPE), substitutes the standard patch embedding with multiple variable-sized patch kernels and selects the best parameters for different resolutions, eliminating the need to resize the original image. Our method does not require high-cost training or modifications to other parts, making it easy to apply to most ViT models. Experiments in image classification, segmentation, and detection tasks demonstrate the effectiveness of MSPE, yielding superior performance on low-resolution inputs and performing comparably on high-resolution inputs with existing methods.
Abstract:Deep neural networks perform remarkably well in close-world scenarios. However, novel classes emerged continually in real applications, making it necessary to learn incrementally. Class-incremental learning (CIL) aims to gradually recognize new classes while maintaining the discriminability of old ones. Existing CIL methods have two limitations: a heavy reliance on preserving old data for forgetting mitigation and the need for vast labeled data for knowledge adaptation. To overcome these issues, we propose a non-exemplar semi-supervised CIL framework with contrastive learning and semi-supervised incremental prototype classifier (Semi-IPC). On the one hand, contrastive learning helps the model learn rich representations, easing the trade-off between learning representations of new classes and forgetting that of old classes. On the other hand, Semi-IPC learns a prototype for each class with unsupervised regularization, enabling the model to incrementally learn from partially labeled new data while maintaining the knowledge of old classes. Experiments on benchmark datasets demonstrate the strong performance of our method: without storing any old samples and only using less than 1% of labels, Semi-IPC outperforms advanced exemplar-based methods. We hope our work offers new insights for future CIL research. The code will be made publicly available.
Abstract:Self-supervised learning (SSL) has emerged as an effective paradigm for deriving general representations from vast amounts of unlabeled data. However, as real-world applications continually integrate new content, the high computational and resource demands of SSL necessitate continual learning rather than complete retraining. This poses a challenge in striking a balance between stability and plasticity when adapting to new information. In this paper, we employ Centered Kernel Alignment for quantitatively analyzing model stability and plasticity, revealing the critical roles of batch normalization layers for stability and convolutional layers for plasticity. Motivated by this, we propose Branch-tuning, an efficient and straightforward method that achieves a balance between stability and plasticity in continual SSL. Branch-tuning consists of branch expansion and compression, and can be easily applied to various SSL methods without the need of modifying the original methods, retaining old data or models. We validate our method through incremental experiments on various benchmark datasets, demonstrating its effectiveness and practical value in real-world scenarios. We hope our work offers new insights for future continual self-supervised learning research. The code will be made publicly available.
Abstract:Convolutional Neural Networks (CNNs) have advanced significantly in visual representation learning and recognition. However, they face notable challenges in performance and computational efficiency when dealing with real-world, multi-scale image inputs. Conventional methods rescale all input images into a fixed size, wherein a larger fixed size favors performance but rescaling small size images to a larger size incurs digitization noise and increased computation cost. In this work, we carry out a comprehensive, layer-wise investigation of CNN models in response to scale variation, based on Centered Kernel Alignment (CKA) analysis. The observations reveal lower layers are more sensitive to input image scale variations than high-level layers. Inspired by this insight, we propose Multi-scale Unified Network (MUSN) consisting of multi-scale subnets, a unified network, and scale-invariant constraint. Our method divides the shallow layers into multi-scale subnets to enable feature extraction from multi-scale inputs, and the low-level features are unified in deep layers for extracting high-level semantic features. A scale-invariant constraint is posed to maintain feature consistency across different scales. Extensive experiments on ImageNet and other scale-diverse datasets, demonstrate that MSUN achieves significant improvements in both model performance and computational efficiency. Particularly, MSUN yields an accuracy increase up to 44.53% and diminishes FLOPs by 7.01-16.13% in multi-scale scenarios.
Abstract:Existing federated learning methods have effectively addressed decentralized learning in scenarios involving data privacy and non-IID data. However, in real-world situations, each client dynamically learns new classes, requiring the global model to maintain discriminative capabilities for both new and old classes. To effectively mitigate the effects of catastrophic forgetting and data heterogeneity under low communication costs, we designed a simple and effective method named PLoRA. On the one hand, we adopt prototype learning to learn better feature representations and leverage the heuristic information between prototypes and class features to design a prototype re-weight module to solve the classifier bias caused by data heterogeneity without retraining the classification layer. On the other hand, our approach utilizes a pre-trained model as the backbone and utilizes LoRA to fine-tune with a tiny amount of parameters when learning new classes. Moreover, PLoRA does not rely on similarity-based module selection strategies, thereby further reducing communication overhead. Experimental results on standard datasets indicate that our method outperforms the state-of-the-art approaches significantly. More importantly, our method exhibits strong robustness and superiority in various scenarios and degrees of data heterogeneity. Our code will be publicly available.
Abstract:Deep Neural Network (DNN) has achieved great success on datasets of closed class set. However, new classes, like new categories of social media topics, are continuously added to the real world, making it necessary to incrementally learn. This is hard for DNN because it tends to focus on fitting to new classes while ignoring old classes, a phenomenon known as catastrophic forgetting. State-of-the-art methods rely on knowledge distillation and data replay techniques but still have limitations. In this work, we analyze the causes of catastrophic forgetting in class incremental learning, which owes to three factors: representation drift, representation confusion, and classifier distortion. Based on this view, we propose a two-stage learning framework with a fixed encoder and an incrementally updated prototype classifier. The encoder is trained with self-supervised learning to generate a feature space with high intrinsic dimensionality, thus improving its transferability and generality. The classifier incrementally learns new prototypes while retaining the prototypes of previously learned data, which is crucial in preserving the decision boundary.Our method does not rely on preserved samples of old classes, is thus a non-exemplar based CIL method. Experiments on public datasets show that our method can significantly outperform state-of-the-art exemplar-based methods when they reserved 5 examplers per class, under the incremental setting of 10 phases, by 18.24% on CIFAR-100 and 9.37% on ImageNet100.
Abstract:The field of numerical simulation is of significant importance for the design and management of real-world systems, with partial differential equations (PDEs) being a commonly used mathematical modeling tool. However, solving PDEs remains still a challenge, as commonly used traditional numerical solvers often require high computational costs. As a result, data-driven methods leveraging machine learning (more particularly Deep Learning) algorithms have been increasingly proposed to learn models that can predict solutions to complex PDEs, such as those arising in computational fluid dynamics (CFD). However, these methods are known to suffer from poor generalization performance on out-of-distribution (OoD) samples, highlighting the need for more efficient approaches. To this end, we present a meta-learning approach to enhance the performance of learned models on OoD samples. Specifically, we set the airflow simulation in CFD over various airfoils as a meta-learning problem, where each set of examples defined on a single airfoil shape is treated as a separate task. Through the use of model-agnostic meta-learning (MAML), we learn a meta-learner capable of adapting to new tasks, i.e., previously unseen airfoil shapes, using only a small amount of task-specific data. We experimentally demonstrate the efficiency of the proposed approach for improving the OoD generalization performance of learned models while maintaining efficiency.
Abstract:An innovative sort of mobility platform that can both drive and fly is the air-ground robot. The need for an agile flight cannot be satisfied by traditional path planning techniques for air-ground robots. Prior studies had mostly focused on improving the energy efficiency of paths, seldom taking the seeking speed and optimizing take-off and landing places into account. A robot for the field application environment was proposed, and a lightweight global spatial planning technique for the robot based on the graph-search algorithm taking mode switching point optimization into account, with an emphasis on energy efficiency, searching speed, and the viability of real deployment. The fundamental concept is to lower the computational burden by employing an interchangeable search approach that combines planar and spatial search. Furthermore, to safeguard the health of the power battery and the integrity of the mission execution, a trap escape approach was also provided. Simulations are run to test the effectiveness of the suggested model based on the field DEM map. The simulation results show that our technology is capable of producing finished, plausible 3D paths with a high degree of believability. Additionally, the mode-switching point optimization method efficiently identifies additional acceptable places for mode switching, and the improved paths use less time and energy.