Abstract:Continual learning aims to equip models with the ability to retain previously learned knowledge like a human. Recent work incorporating Parameter-Efficient Fine-Tuning has revitalized the field by introducing lightweight extension modules. However, existing methods usually overlook the issue of information leakage caused by the fact that the experiment data have been used in pre-trained models. Once these duplicate data are removed in the pre-training phase, their performance can be severely affected. In this paper, we propose a new LoRA-based rehearsal-free method named DESIRE. Our method avoids imposing additional constraints during training to mitigate catastrophic forgetting, thereby maximizing the learning of new classes. To integrate knowledge from old and new tasks, we propose two efficient post-processing modules. On the one hand, we retain only two sets of LoRA parameters for merging and propose dynamic representation consolidation to calibrate the merged feature representation. On the other hand, we propose decision boundary refinement to address classifier bias when training solely on new class data. Extensive experiments demonstrate that our method achieves state-of-the-art performance on multiple datasets and strikes an effective balance between stability and plasticity. Our code will be publicly available.
Abstract:Large Multimodal Models (LMMs) exhibit remarkable multi-tasking ability by learning mixed datasets jointly. However, novel tasks would be encountered sequentially in dynamic world, and continually fine-tuning LMMs often leads to performance degrades. To handle the challenges of catastrophic forgetting, existing methods leverage data replay or model expansion, both of which are not specially developed for LMMs and have their inherent limitations. In this paper, we propose a novel dual-modality guided prompt learning framework (ModalPrompt) tailored for multimodal continual learning to effectively learn new tasks while alleviating forgetting of previous knowledge. Concretely, we learn prototype prompts for each task and exploit efficient prompt selection for task identifiers and prompt fusion for knowledge transfer based on image-text supervision. Extensive experiments demonstrate the superiority of our approach, e.g., ModalPrompt achieves +20% performance gain on LMMs continual learning benchmarks with $\times$ 1.42 inference speed refraining from growing training cost in proportion to the number of tasks. The code will be made publically available.
Abstract:Existing federated learning methods have effectively addressed decentralized learning in scenarios involving data privacy and non-IID data. However, in real-world situations, each client dynamically learns new classes, requiring the global model to maintain discriminative capabilities for both new and old classes. To effectively mitigate the effects of catastrophic forgetting and data heterogeneity under low communication costs, we designed a simple and effective method named PLoRA. On the one hand, we adopt prototype learning to learn better feature representations and leverage the heuristic information between prototypes and class features to design a prototype re-weight module to solve the classifier bias caused by data heterogeneity without retraining the classification layer. On the other hand, our approach utilizes a pre-trained model as the backbone and utilizes LoRA to fine-tune with a tiny amount of parameters when learning new classes. Moreover, PLoRA does not rely on similarity-based module selection strategies, thereby further reducing communication overhead. Experimental results on standard datasets indicate that our method outperforms the state-of-the-art approaches significantly. More importantly, our method exhibits strong robustness and superiority in various scenarios and degrees of data heterogeneity. Our code will be publicly available.
Abstract:This paper reports on the NTIRE 2021 challenge on perceptual image quality assessment (IQA), held in conjunction with the New Trends in Image Restoration and Enhancement workshop (NTIRE) workshop at CVPR 2021. As a new type of image processing technology, perceptual image processing algorithms based on Generative Adversarial Networks (GAN) have produced images with more realistic textures. These output images have completely different characteristics from traditional distortions, thus pose a new challenge for IQA methods to evaluate their visual quality. In comparison with previous IQA challenges, the training and testing datasets in this challenge include the outputs of perceptual image processing algorithms and the corresponding subjective scores. Thus they can be used to develop and evaluate IQA methods on GAN-based distortions. The challenge has 270 registered participants in total. In the final testing stage, 13 participating teams submitted their models and fact sheets. Almost all of them have achieved much better results than existing IQA methods, while the winning method can demonstrate state-of-the-art performance.