Abstract:Air quality prediction plays a crucial role in public health and environmental protection. Accurate air quality prediction is a complex multivariate spatiotemporal problem, that involves interactions across temporal patterns, pollutant correlations, spatial station dependencies, and particularly meteorological influences that govern pollutant dispersion and chemical transformations. Existing works underestimate the critical role of atmospheric conditions in air quality prediction and neglect comprehensive meteorological data utilization, thereby impairing the modeling of dynamic interdependencies between air quality and meteorological data. To overcome this, we propose MDSTNet, an encoder-decoder framework that explicitly models air quality observations and atmospheric conditions as distinct modalities, integrating multi-pressure-level meteorological data and weather forecasts to capture atmosphere-pollution dependencies for prediction. Meantime, we construct ChinaAirNet, the first nationwide dataset combining air quality records with multi-pressure-level meteorological observations. Experimental results on ChinaAirNet demonstrate MDSTNet's superiority, substantially reducing 48-hour prediction errors by 17.54\% compared to the state-of-the-art model. The source code and dataset will be available on github.
Abstract:As a strategic pillar industry for human survival and development, modern agriculture faces dual challenges: optimizing production efficiency and achieving sustainable development. Against the backdrop of intensified climate change leading to frequent extreme weather events, the uncertainty risks in agricultural production systems are increasing exponentially. To address these challenges, this study proposes an innovative \textbf{M}ultimodal \textbf{A}gricultural \textbf{A}gent \textbf{A}rchitecture (\textbf{MA3}), which leverages cross-modal information fusion and task collaboration mechanisms to achieve intelligent agricultural decision-making. This study constructs a multimodal agricultural agent dataset encompassing five major tasks: classification, detection, Visual Question Answering (VQA), tool selection, and agent evaluation. We propose a unified backbone for sugarcane disease classification and detection tools, as well as a sugarcane disease expert model. By integrating an innovative tool selection module, we develop a multimodal agricultural agent capable of effectively performing tasks in classification, detection, and VQA. Furthermore, we introduce a multi-dimensional quantitative evaluation framework and conduct a comprehensive assessment of the entire architecture over our evaluation dataset, thereby verifying the practicality and robustness of MA3 in agricultural scenarios. This study provides new insights and methodologies for the development of agricultural agents, holding significant theoretical and practical implications. Our source code and dataset will be made publicly available upon acceptance.
Abstract:Recent advances in Multi-modal Large Language Models (MLLMs) have shown significant progress in open-world Visual Question Answering (VQA). However, integrating visual information increases the number of processed tokens, leading to higher GPU memory usage and computational overhead. Images often contain more redundant information than text, and not all visual details are pertinent to specific questions. To address these challenges, we propose QG-VTC, a novel question-guided visual token compression method for MLLM-based VQA tasks. QG-VTC employs a pretrained text encoder and a learnable feed-forward layer to embed user questions into the vision encoder's feature space then computes correlation scores between the question embeddings and visual tokens. By selecting the most relevant tokens and softly compressing others, QG-VTC ensures fine-tuned relevance to user needs. Additionally, a progressive strategy applies this compression across different vision encoder layers, gradually reducing token numbers. This approach maximizes retention of question-relevant information while discarding irrelevant details. Experimental results show that our method achieves performance on par with uncompressed models using just 1/8 of the visual tokens. The code and model will be publicly available on GitHub.
Abstract:Large Language Models (LLMs) have been integrated into recommender systems to enhance user behavior comprehension. The Retrieval Augmented Generation (RAG) technique is further incorporated into these systems to retrieve more relevant items and improve system performance. However, existing RAG methods have two shortcomings. \textit{(i)} In the \textit{retrieval} stage, they rely primarily on textual semantics and often fail to incorporate the most relevant items, thus constraining system effectiveness. \textit{(ii)} In the \textit{generation} stage, they lack explicit chain-of-thought reasoning, further limiting their potential. In this paper, we propose Representation learning and \textbf{R}easoning empowered retrieval-\textbf{A}ugmented \textbf{L}arge \textbf{L}anguage model \textbf{Rec}ommendation (RALLRec+). Specifically, for the retrieval stage, we prompt LLMs to generate detailed item descriptions and perform joint representation learning, combining textual and collaborative signals extracted from the LLM and recommendation models, respectively. To account for the time-varying nature of user interests, we propose a simple yet effective reranking method to capture preference dynamics. For the generation phase, we first evaluate reasoning LLMs on recommendation tasks, uncovering valuable insights. Then we introduce knowledge-injected prompting and consistency-based merging approach to integrate reasoning LLMs with general-purpose LLMs, enhancing overall performance. Extensive experiments on three real world datasets validate our method's effectiveness.
Abstract:A vast amount of instruction tuning data is crucial for the impressive performance of Large Multimodal Models (LMMs), but the associated computational costs and data collection demands during supervised fine-tuning make it impractical for most researchers. Federated learning (FL) has the potential to leverage all distributed data and training resources to reduce the overhead of joint training. However, most existing methods assume a fixed number of tasks, while in real-world scenarios, clients continuously encounter new knowledge and often struggle to retain old tasks due to memory constraints. In this work, we introduce the Federated Continual Instruction Tuning (FCIT) benchmark to model this real-world challenge. Our benchmark includes two realistic scenarios, encompassing four different settings and twelve carefully curated instruction tuning datasets. To address the challenges posed by FCIT, we propose dynamic knowledge organization to effectively integrate updates from different tasks during training and subspace selective activation to allocate task-specific output during inference. Extensive experimental results demonstrate that our proposed method significantly enhances model performance across varying levels of data heterogeneity and catastrophic forgetting. Our source code and dataset will be made publicly available.
Abstract:Many online advertising platforms provide advertisers with auto-bidding services to enhance their advertising performance. However, most existing auto-bidding algorithms fail to accurately capture the auto-bidding problem formulation that the platform truly faces, let alone solve it. Actually, we argue that the platform should try to help optimize each advertiser's performance to the greatest extent -- which makes $\epsilon$-Nash Equilibrium ($\epsilon$-NE) a necessary solution concept -- while maximizing the social welfare of all the advertisers for the platform's long-term value. Based on this, we introduce the \emph{Nash-Equilibrium Constrained Bidding} (NCB), a new formulation of the auto-bidding problem from the platform's perspective. Specifically, it aims to maximize the social welfare of all advertisers under the $\epsilon$-NE constraint. However, the NCB problem presents significant challenges due to its constrained bi-level structure and the typically large number of advertisers involved. To address these challenges, we propose a \emph{Bi-level Policy Gradient} (BPG) framework with theoretical guarantees. Notably, its computational complexity is independent of the number of advertisers, and the associated gradients are straightforward to compute. Extensive simulated and real-world experiments validate the effectiveness of the BPG framework.
Abstract:Despite the growing attention to time series forecasting in recent years, many studies have proposed various solutions to address the challenges encountered in time series prediction, aiming to improve forecasting performance. However, effectively applying these time series forecasting models to the field of financial asset pricing remains a challenging issue. There is still a need for a bridge to connect cutting-edge time series forecasting models with financial asset pricing. To bridge this gap, we have undertaken the following efforts: 1) We constructed three datasets from the financial domain; 2) We selected over ten time series forecasting models from recent studies and validated their performance in financial time series; 3) We developed new metrics, msIC and msIR, in addition to MSE and MAE, to showcase the time series correlation captured by the models; 4) We designed financial-specific tasks for these three datasets and assessed the practical performance and application potential of these forecasting models in important financial problems. We hope the developed new evaluation suite, FinTSBridge, can provide valuable insights into the effectiveness and robustness of advanced forecasting models in finanical domains.
Abstract:This study seeks to advance the understanding and prediction of stock market return uncertainty through the application of advanced deep learning techniques. We introduce a novel deep learning model that utilizes a Gaussian mixture distribution to capture the complex, time-varying nature of asset return distributions in the Chinese stock market. By incorporating the Gaussian mixture distribution, our approach effectively characterizes short-term fluctuations and non-traditional features of stock returns, such as skewness and heavy tails, that are often overlooked by traditional models. Compared to GARCH models and their variants, our method demonstrates superior performance in volatility estimation, particularly during periods of heightened market volatility. It provides more accurate volatility forecasts and offers unique risk insights for different assets, thereby deepening the understanding of return uncertainty. Additionally, we propose a novel use of Code embedding which utilizes a bag-of-words approach to train hidden representations of stock codes and transforms the uncertainty attributes of stocks into high-dimensional vectors. These vectors are subsequently reduced to two dimensions, allowing the observation of similarity among different stocks. This visualization facilitates the identification of asset clusters with similar risk profiles, offering valuable insights for portfolio management and risk mitigation. Since we predict the uncertainty of returns by estimating their latent distribution, it is challenging to evaluate the return distribution when the true distribution is unobservable. However, we can measure it through the CRPS to assess how well the predicted distribution matches the true returns, and through MSE and QLIKE metrics to evaluate the error between the volatility level of the predicted distribution and proxy measures of true volatility.
Abstract:Although multi-task learning (MTL) has been a preferred approach and successfully applied in many real-world scenarios, MTL models are not guaranteed to outperform single-task models on all tasks mainly due to the negative effects of conflicting gradients among the tasks. In this paper, we fully examine the influence of conflicting gradients and further emphasize the importance and advantages of achieving non-conflicting gradients which allows simple but effective trade-off strategies among the tasks with stable performance. Based on our findings, we propose the Gradient Deconfliction via Orthogonal Projections onto Subspaces (GradOPS) spanned by other task-specific gradients. Our method not only solves all conflicts among the tasks, but can also effectively search for diverse solutions towards different trade-off preferences among the tasks. Theoretical analysis on convergence is provided, and performance of our algorithm is fully testified on multiple benchmarks in various domains. Results demonstrate that our method can effectively find multiple state-of-the-art solutions with different trade-off strategies among the tasks on multiple datasets.
Abstract:Large language models (LLMs) achieve remarkable success in natural language processing (NLP). In practical scenarios like recommendations, as users increasingly seek personalized experiences, it becomes crucial to incorporate user interaction history into the context of LLMs to enhance personalization. However, from a practical utility perspective, user interactions' extensive length and noise present challenges when used directly as text prompts. A promising solution is to compress and distill interactions into compact embeddings, serving as soft prompts to assist LLMs in generating personalized responses. Although this approach brings efficiency, a critical concern emerges: Can user embeddings adequately capture valuable information and prompt LLMs? To address this concern, we propose \name, a benchmark designed to evaluate the effectiveness of user embeddings in prompting LLMs for personalization. We establish a fair and standardized evaluation process, encompassing pre-training, fine-tuning, and evaluation stages. To thoroughly evaluate user embeddings, we design three dimensions of tasks: sequence understanding, action prediction, and interest perception. These evaluation tasks cover the industry's demands in traditional recommendation tasks, such as improving prediction accuracy, and its aspirations for LLM-based methods, such as accurately understanding user interests and enhancing the user experience. We conduct extensive experiments on various state-of-the-art methods for modeling user embeddings. Additionally, we reveal the scaling laws of leveraging user embeddings to prompt LLMs. The benchmark is available online.