Abstract:Large Language Models (LLMs) have been integrated into recommendation systems to enhance user behavior comprehension. The Retrieval Augmented Generation (RAG) technique is further incorporated into these systems to retrieve more relevant items and improve system performance. However, existing RAG methods rely primarily on textual semantics and often fail to incorporate the most relevant items, limiting the effectiveness of the systems. In this paper, we propose Representation learning for retrieval-Augmented Large Language model Recommendation (RALLRec). Specifically, we enhance textual semantics by prompting LLMs to generate more detailed item descriptions, followed by joint representation learning of textual and collaborative semantics, which are extracted by the LLM and recommendation models, respectively. Considering the potential time-varying characteristics of user interest, a simple yet effective reranking method is further introduced to capture the dynamics of user preference. We conducted extensive experiments on three real-world datasets, and the evaluation results validated the effectiveness of our method. Code is made public at https://github.com/JianXu95/RALLRec.
Abstract:Training machine learning models on decentralized private data via federated learning (FL) poses two key challenges: communication efficiency and privacy protection. In this work, we address these challenges within the trusted aggregator model by introducing a novel approach called the Communication-Efficient and Privacy-Adaptable Mechanism (CEPAM), achieving both objectives simultaneously. In particular, CEPAM leverages the rejection-sampled universal quantizer (RSUQ), a construction of randomized vector quantizer whose resulting distortion is equivalent to a prescribed noise, such as Gaussian or Laplace noise, enabling joint differential privacy and compression. Moreover, we analyze the trade-offs among user privacy, global utility, and transmission rate of CEPAM by defining appropriate metrics for FL with differential privacy and compression. Our CEPAM provides the additional benefit of privacy adaptability, allowing clients and the server to customize privacy protection based on required accuracy and protection. We assess CEPAM's utility performance using MNIST dataset, demonstrating that CEPAM surpasses baseline models in terms of learning accuracy.
Abstract:The embedded topic model (ETM) is a widely used approach that assumes the sampled document-topic distribution conforms to the logistic normal distribution for easier optimization. However, this assumption oversimplifies the real document-topic distribution, limiting the model's performance. In response, we propose a novel method that introduces the diffusion process into the sampling process of document-topic distribution to overcome this limitation and maintain an easy optimization process. We validate our method through extensive experiments on two mainstream datasets, proving its effectiveness in improving topic modeling performance.
Abstract:Deploying Convolutional Neural Networks (CNNs) on resource-constrained devices necessitates efficient management of computational resources, often via distributed systems susceptible to latency from straggler nodes. This paper introduces the Flexible Coded Distributed Convolution Computing (FCDCC) framework to enhance fault tolerance and numerical stability in distributed CNNs. We extend Coded Distributed Computing (CDC) with Circulant and Rotation Matrix Embedding (CRME) which was originally proposed for matrix multiplication to high-dimensional tensor convolution. For the proposed scheme, referred to as Numerically Stable Coded Tensor Convolution (NSCTC) scheme, we also propose two new coded partitioning schemes: Adaptive-Padding Coded Partitioning (APCP) for input tensor and Kernel-Channel Coded Partitioning (KCCP) for filter tensor. These strategies enable linear decomposition of tensor convolutions and encoding them into CDC sub-tasks, combining model parallelism with coded redundancy for robust and efficient execution. Theoretical analysis identifies an optimal trade-off between communication and storage costs. Empirical results validate the framework's effectiveness in computational efficiency, fault tolerance, and scalability across various CNN architectures.
Abstract:Open-vocabulary multi-object tracking (OVMOT) represents a critical new challenge involving the detection and tracking of diverse object categories in videos, encompassing both seen categories (base classes) and unseen categories (novel classes). This issue amalgamates the complexities of open-vocabulary object detection (OVD) and multi-object tracking (MOT). Existing approaches to OVMOT often merge OVD and MOT methodologies as separate modules, predominantly focusing on the problem through an image-centric lens. In this paper, we propose VOVTrack, a novel method that integrates object states relevant to MOT and video-centric training to address this challenge from a video object tracking standpoint. First, we consider the tracking-related state of the objects during tracking and propose a new prompt-guided attention mechanism for more accurate localization and classification (detection) of the time-varying objects. Subsequently, we leverage raw video data without annotations for training by formulating a self-supervised object similarity learning technique to facilitate temporal object association (tracking). Experimental results underscore that VOVTrack outperforms existing methods, establishing itself as a state-of-the-art solution for open-vocabulary tracking task.
Abstract:Large Language Models (LLMs) have recently revolutionized the NLP field, while they still fall short in some specific down-stream tasks. In the work, we focus on utilizing LLMs to perform machine translation, where we observe that two patterns of errors frequently occur and drastically affect the translation quality: language mismatch and repetition. The work sets out to explore the potential for mitigating these two issues by leveraging model editing methods, e.g., by locating Feed-Forward Network (FFN) neurons or something that are responsible for the errors and deactivating them in the inference time. We find that directly applying such methods either limited effect on the targeted errors or has significant negative side-effect on the general translation quality, indicating that the located components may also be crucial for ensuring machine translation with LLMs on the rails. To this end, we propose to refine the located components by fetching the intersection of the locating results under different language settings, filtering out the aforementioned information that is irrelevant to targeted errors. The experiment results empirically demonstrate that our methods can effectively reduce the language mismatch and repetition ratios and meanwhile enhance or keep the general translation quality in most cases.
Abstract:Large language models (LLMs) exhibit varying strengths and weaknesses across different tasks, prompting recent studies to explore the benefits of ensembling models to leverage their complementary advantages. However, existing LLM ensembling methods often overlook model compatibility and struggle with inefficient alignment of probabilities across the entire vocabulary. In this study, we empirically investigate the factors influencing ensemble performance, identifying model performance, vocabulary size, and response style as key determinants, revealing that compatibility among models is essential for effective ensembling. This analysis leads to the development of a simple yet effective model selection strategy that identifies compatible models. Additionally, we introduce the \textsc{Uni}on \textsc{T}op-$k$ \textsc{E}nsembling (\textsc{UniTE}), a novel approach that efficiently combines models by focusing on the union of the top-k tokens from each model, thereby avoiding the need for full vocabulary alignment and reducing computational overhead. Extensive evaluations across multiple benchmarks demonstrate that \textsc{UniTE} significantly enhances performance compared to existing methods, offering a more efficient framework for LLM ensembling.
Abstract:Expensive optimization problems (EOPs) have attracted increasing research attention over the decades due to their ubiquity in a variety of practical applications. Despite many sophisticated surrogate-assisted evolutionary algorithms (SAEAs) that have been developed for solving such problems, most of them lack the ability to transfer knowledge from previously-solved tasks and always start their search from scratch, making them troubled by the notorious cold-start issue. A few preliminary studies that integrate transfer learning into SAEAs still face some issues, such as defective similarity quantification that is prone to underestimate promising knowledge, surrogate-dependency that makes the transfer methods not coherent with the state-of-the-art in SAEAs, etc. In light of the above, a plug and play competitive knowledge transfer method is proposed to boost various SAEAs in this paper. Specifically, both the optimized solutions from the source tasks and the promising solutions acquired by the target surrogate are treated as task-solving knowledge, enabling them to compete with each other to elect the winner for expensive evaluation, thus boosting the search speed on the target task. Moreover, the lower bound of the convergence gain brought by the knowledge competition is mathematically analyzed, which is expected to strengthen the theoretical foundation of sequential transfer optimization. Experimental studies conducted on a series of benchmark problems and a practical application from the petroleum industry verify the efficacy of the proposed method. The source code of the competitive knowledge transfer is available at https://github.com/XmingHsueh/SAS-CKT.
Abstract:We study a novel yet practical problem of open-corpus multi-object tracking (OCMOT), which extends the MOT into localizing, associating, and recognizing generic-category objects of both seen (base) and unseen (novel) classes, but without the category text list as prompt. To study this problem, the top priority is to build a benchmark. In this work, we build OCTrackB, a large-scale and comprehensive benchmark, to provide a standard evaluation platform for the OCMOT problem. Compared to previous datasets, OCTrackB has more abundant and balanced base/novel classes and the corresponding samples for evaluation with less bias. We also propose a new multi-granularity recognition metric to better evaluate the generative object recognition in OCMOT. By conducting the extensive benchmark evaluation, we report and analyze the results of various state-of-the-art methods, which demonstrate the rationale of OCMOT, as well as the usefulness and advantages of OCTrackB.
Abstract:Large language models (LLMs) have exhibited their problem-solving ability in mathematical reasoning. Solving realistic optimization (OPT) problems in industrial application scenarios requires advanced and applied math ability. However, current OPT benchmarks that merely solve linear programming are far from complex realistic situations. In this work, we propose E-OPT, a benchmark for end-to-end optimization problem-solving with human-readable inputs and outputs. E-OPT contains rich optimization problems, including linear/nonlinear programming with/without table data, which can comprehensively evaluate LLMs' solving ability. In our benchmark, LLMs are required to correctly understand the problem in E-OPT and call code solver to get precise numerical answers. Furthermore, to alleviate the data scarcity for optimization problems, and to bridge the gap between open-source LLMs on a small scale (e.g., Llama-2-7b and Llama-3-8b) and closed-source LLMs (e.g., GPT-4), we further propose a novel data synthesis method namely ReSocratic. Unlike general data synthesis methods that proceed from questions to answers, ReSocratic first incrementally synthesizes optimization scenarios with mathematical formulations step by step and then back-translates the generated scenarios into questions. In such a way, we construct the ReSocratic-29k dataset from a small seed sample pool with the powerful open-source large model DeepSeek-V2. To demonstrate the effectiveness of ReSocratic, we conduct supervised fine-tuning with ReSocratic-29k on multiple open-source models. The results show that Llama3-8b is significantly improved from 13.6% to 51.7% on E-OPT, while DeepSeek-V2 reaches 61.0%, approaching 65.5% of GPT-4.