Abstract:The ever-increasing demand for ubiquitous, continuous, and high-quality services poses a great challenge to the traditional terrestrial network. To mitigate this problem, the mobile-edge-computing-enhanced low earth orbit (LEO) satellite network, which provides both communication connectivity and on-board processing services, has emerged as an effective method. The main issue in LEO satellites includes finding the optimal locations to host network functions (NFs) and then making offloading decisions. In this article, we jointly consider the problem of service chain caching and computation offloading to minimize the overall cost, which consists of task latency and energy consumption. In particular, the collaboration among satellites, the network resource limitations, and the specific operation order of NFs in service chains are taken into account. Then, the problem is formulated and linearized as an integer linear programming model. Moreover, to accelerate the solution, we provide a greedy algorithm with cubic time complexity. Numerical investigations demonstrate the effectiveness of the proposed scheme, which can reduce the overall cost by around 20% compared to the nominal case where NFs are served in data centers.
Abstract:In recent years, the assessment of fundamental movement skills integrated with physical education has focused on both teaching practice and the feasibility of assessment. The object of assessment has shifted from multiple ages to subdivided ages, while the content of assessment has changed from complex and time-consuming to concise and efficient. Therefore, we apply deep learning to physical fitness evaluation, we propose a system based on the Canadian Agility and Movement Skill Assessment (CAMSA) Physical Fitness Evaluation System (CPFES), which evaluates children's physical fitness based on CAMSA, and gives recommendations based on the scores obtained by CPFES to help children grow. We have designed a landmark detection module and a pose estimation module, and we have also designed a pose evaluation module for the CAMSA criteria that can effectively evaluate the actions of the child being tested. Our experimental results demonstrate the high accuracy of the proposed system.
Abstract:Single image dehazing as a fundamental low-level vision task, is essential for the development of robust intelligent surveillance system. In this paper, we make an early effort to consider dehazing robustness under variational haze density, which is a realistic while under-studied problem in the research filed of singe image dehazing. To properly address this problem, we propose a novel density-variational learning framework to improve the robustness of the image dehzing model assisted by a variety of negative hazy images, to better deal with various complex hazy scenarios. Specifically, the dehazing network is optimized under the consistency-regularized framework with the proposed Contrast-Assisted Reconstruction Loss (CARL). The CARL can fully exploit the negative information to facilitate the traditional positive-orient dehazing objective function, by squeezing the dehazed image to its clean target from different directions. Meanwhile, the consistency regularization keeps consistent outputs given multi-level hazy images, thus improving the model robustness. Extensive experimental results on two synthetic and three real-world datasets demonstrate that our method significantly surpasses the state-of-the-art approaches.
Abstract:Many gait recognition methods first partition the human gait into N-parts and then combine them to establish part-based feature representations. Their gait recognition performance is often affected by partitioning strategies, which are empirically chosen in different datasets. However, we observe that strips as the basic component of parts are agnostic against different partitioning strategies. Motivated by this observation, we present a strip-based multi-level gait recognition network, named GaitStrip, to extract comprehensive gait information at different levels. To be specific, our high-level branch explores the context of gait sequences and our low-level one focuses on detailed posture changes. We introduce a novel StriP-Based feature extractor (SPB) to learn the strip-based feature representations by directly taking each strip of the human body as the basic unit. Moreover, we propose a novel multi-branch structure, called Enhanced Convolution Module (ECM), to extract different representations of gaits. ECM consists of the Spatial-Temporal feature extractor (ST), the Frame-Level feature extractor (FL) and SPB, and has two obvious advantages: First, each branch focuses on a specific representation, which can be used to improve the robustness of the network. Specifically, ST aims to extract spatial-temporal features of gait sequences, while FL is used to generate the feature representation of each frame. Second, the parameters of the ECM can be reduced in test by introducing a structural re-parameterization technique. Extensive experimental results demonstrate that our GaitStrip achieves state-of-the-art performance in both normal walking and complex conditions.
Abstract:Single image dehazing is a prerequisite which affects the performance of many computer vision tasks and has attracted increasing attention in recent years. However, most existing dehazing methods emphasize more on haze removal but less on the detail recovery of the dehazed images. In this paper, we propose a single image dehazing method with an independent Detail Recovery Network (DRN), which considers capturing the details from the input image over a separate network and then integrates them into a coarse dehazed image. The overall network consists of two independent networks, named DRN and the dehazing network respectively. Specifically, the DRN aims to recover the dehazed image details through local and global branches respectively. The local branch can obtain local detail information through the convolution layer and the global branch can capture more global information by the Smooth Dilated Convolution (SDC). The detail feature map is fused into the coarse dehazed image to obtain the dehazed image with rich image details. Besides, we integrate the DRN, the physical-model-based dehazing network and the reconstruction loss into an end-to-end joint learning framework. Extensive experiments on the public image dehazing datasets (RESIDE-Indoor, RESIDE-Outdoor and the TrainA-TestA) illustrate the effectiveness of the modules in the proposed method and show that our method outperforms the state-of-the-art dehazing methods both quantitatively and qualitatively. The code is released in https://github.com/YanLi-LY/Dehazing-DRN.
Abstract:Typical optical coherence tomographic angiography (OCTA) acquisition areas on commercial devices are 3x3- or 6x6-mm. Compared to 3x3-mm angiograms with proper sampling density, 6x6-mm angiograms have significantly lower scan quality, with reduced signal-to-noise ratio and worse shadow artifacts due to undersampling. Here, we propose a deep-learning-based high-resolution angiogram reconstruction network (HARNet) to generate enhanced 6x6-mm superficial vascular complex (SVC) angiograms. The network was trained on data from 3x3-mm and 6x6-mm angiograms from the same eyes. The reconstructed 6x6-mm angiograms have significantly lower noise intensity and better vascular connectivity than the original images. The algorithm did not generate false flow signal at the noise level presented by the original angiograms. The image enhancement produced by our algorithm may improve biomarker measurements and qualitative clinical assessment of 6x6-mm OCTA.
Abstract:Hashing is an effective technique to address the large-scale recommendation problem, due to its high computation and storage efficiency on calculating the user preferences on items. However, existing hashing-based recommendation methods still suffer from two important problems: 1) Their recommendation process mainly relies on the user-item interactions and single specific content feature. When the interaction history or the content feature is unavailable (the cold-start problem), their performance will be seriously deteriorated. 2) Existing methods learn the hash codes with relaxed optimization or adopt discrete coordinate descent to directly solve binary hash codes, which results in significant quantization loss or consumes considerable computation time. In this paper, we propose a fast cold-start recommendation method, called Multi-Feature Discrete Collaborative Filtering (MFDCF), to solve these problems. Specifically, a low-rank self-weighted multi-feature fusion module is designed to adaptively project the multiple content features into binary yet informative hash codes by fully exploiting their complementarity. Additionally, we develop a fast discrete optimization algorithm to directly compute the binary hash codes with simple operations. Experiments on two public recommendation datasets demonstrate that MFDCF outperforms the state-of-the-arts on various aspects.
Abstract:Content-based near-duplicate video detection (NDVD) is essential for effective search and retrieval, and robust video fingerprinting is a good solution for NDVD. Most existing video fingerprinting methods use a single feature or concatenating different features to generate video fingerprints, and show a good performance under single-mode modifications such as noise addition and blurring. However, when they suffer combined modifications, the performance is degraded to a certain extent because such features cannot characterize the video content completely. By contrast, the assistance and consensus among different features can improve the performance of video fingerprinting. Therefore, in the present study, we mine the assistance and consensus among different features based on tensor model, and present a new comprehensive feature to fully use them in the proposed video fingerprinting framework. We also analyze what the comprehensive feature really is for representing the original video. In this framework, the video is initially set as a high-order tensor that consists of different features, and the video tensor is decomposed via the Tucker model with a solution that determines the number of components. Subsequently, the comprehensive feature is generated by the low-order tensor obtained from tensor decomposition. Finally, the video fingerprint is computed using this feature. A matching strategy used for narrowing the search is also proposed based on the core tensor. The robust video fingerprinting framework is resistant not only to single-mode modifications, but also to the combination of them.