Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities on various tasks, while the further evolvement is limited to the lack of high-quality training data. In addition, traditional training approaches rely too much on expert-labeled data, setting an upper limit on the performance of LLMs. To address this issue, we propose a novel paradigm that enables LLMs to train itself by autonomously generating, cleaning, reviewing, and annotating data with preference information, named LANCE. Our approach demonstrates that LLMs can serve as continuous self-evolving data engineers, significantly reducing the time and cost of the post-training data construction process. Through iterative fine-tuning on different variants of the Qwen2, we validate the effectiveness of LANCE across various tasks, showing that it can continuously improve model performance and maintain high-quality data generation. Across eight benchmark dimensions, LANCE resulted in an average score enhancement of 3.36 for Qwen2-7B and 2.70 for Qwen2-7B-Instruct. This training paradigm with autonomous data construction not only reduces the reliance on human experts or external models but also ensures that the data aligns with human values and preferences, paving the way for the development of future superintelligent systems that can exceed human capabilities.
Abstract:The intricate microstructure serves as the cornerstone for the composition/processing-structure-property (CPSP) connection in multiphase alloys. Traditional alloy design methods often overlook microstructural details, which diminishes the reliability and effectiveness of the outcomes. This study introduces an improved alloy design algorithm that integrates authentic microstructural information to establish precise CPSP relationships. The approach utilizes a deep-learning framework based on a variational autoencoder to map real microstructural data to a latent space, enabling the prediction of composition, processing steps, and material properties from the latent space vector. By integrating this deep learning model with a specific sampling strategy in the latent space, a novel, microstructure-centered algorithm for multiphase alloy design is developed. This algorithm is demonstrated through the design of a unified dual-phase steel, and the results are assessed at three performance levels. Moreover, an exploration into the latent vector space of the model highlights its seamless interpolation ability and its rich material information content. Notably, the current configuration of the latent space is particularly advantageous for alloy design, offering an exhaustive representation of microstructure, composition, processing, and property variations essential for multiphase alloys.
Abstract:Multi-hop Question Answering (QA) necessitates complex reasoning by integrating multiple pieces of information to resolve intricate questions. However, existing QA systems encounter challenges such as outdated information, context window length limitations, and an accuracy-quantity trade-off. To address these issues, we propose a novel framework, the Hierarchical Retrieval-Augmented Generation Model with Rethink (HiRAG), comprising Decomposer, Definer, Retriever, Filter, and Summarizer five key modules. We introduce a new hierarchical retrieval strategy that incorporates both sparse retrieval at the document level and dense retrieval at the chunk level, effectively integrating their strengths. Additionally, we propose a single-candidate retrieval method to mitigate the limitations of multi-candidate retrieval. We also construct two new corpora, Indexed Wikicorpus and Profile Wikicorpus, to address the issues of outdated and insufficient knowledge. Our experimental results on four datasets demonstrate that HiRAG outperforms state-of-the-art models across most metrics, and our Indexed Wikicorpus is effective. The code for HiRAG is available at https://github.com/2282588541a/HiRAG
Abstract:Low-complexity Bayes-optimal memory approximate message passing (MAMP) is an efficient signal estimation algorithm in compressed sensing and multicarrier modulation. However, achieving replica Bayes optimality with MAMP necessitates a large-scale right-unitarily invariant transformation, which is prohibitive in practical systems due to its high computational complexity and hardware costs. To solve this difficulty, this letter proposes a low-complexity interleaved block-sparse (IBS) transform, which consists of interleaved multiple low-dimensional transform matrices, aimed at reducing the hardware implementation scale while mitigating performance loss. Furthermore, an IBS cross-domain memory approximate message passing (IBS-CD-MAMP) estimator is developed, comprising a memory linear estimator in the IBS transform domain and a non-linear estimator in the source domain. Numerical results show that the IBS-CD-MAMP offers a reduced implementation scale and lower complexity with excellent performance in IBS-based compressed sensing and interleave frequency division multiplexing systems.
Abstract:Emotional Support Conversation (ESC) is a typical dialogue that can effec-tively assist the user in mitigating emotional pressures. However, owing to the inherent subjectivity involved in analyzing emotions, current non-artificial methodologies face challenges in effectively appraising the emo-tional support capability. These metrics exhibit a low correlation with human judgments. Concurrently, manual evaluation methods extremely will cause high costs. To solve these problems, we propose a novel model FEEL (Framework for Evaluating Emotional Support Capability with Large Lan-guage Models), employing Large Language Models (LLMs) as evaluators to assess emotional support capabilities. The model meticulously considers var-ious evaluative aspects of ESC to apply a more comprehensive and accurate evaluation method for ESC. Additionally, it employs a probability distribu-tion approach for a more stable result and integrates an ensemble learning strategy, leveraging multiple LLMs with assigned weights to enhance evalua-tion accuracy. To appraise the performance of FEEL, we conduct extensive experiments on existing ESC model dialogues. Experimental results demon-strate our model exhibits a substantial enhancement in alignment with human evaluations compared to the baselines. Our source code is available at https://github.com/Ansisy/FEEL.
Abstract:In the realm of time series forecasting (TSF), the Transformer has consistently demonstrated robust performance due to its ability to focus on the global context and effectively capture long-range dependencies within time, as well as discern correlations between multiple variables. However, due to the inefficiencies of the Transformer model and questions surrounding its ability to capture dependencies, ongoing efforts to refine the Transformer architecture persist. Recently, state space models (SSMs), e.g. Mamba, have gained traction due to their ability to capture complex dependencies in sequences, similar to the Transformer, while maintaining near-linear complexity. In text and image tasks, Mamba-based models can improve performance and cost savings, creating a win-win situation. This has piqued our interest in exploring SSM's potential in TSF tasks. In this paper, we introduce two straightforward SSM-based models for TSF, S-Mamba and D-Mamba, both employing the Mamba Block to extract variate correlations. Remarkably, S-Mamba and D-Mamba achieve superior performance while saving GPU memory and training time. Furthermore, we conduct extensive experiments to delve deeper into the potential of Mamba compared to the Transformer in the TSF, aiming to explore a new research direction for this field. Our code is available at https://github.com/wzhwzhwzh0921/S-D-Mamba.
Abstract:LLMs have demonstrated commendable performance across diverse domains. Nevertheless, formulating high-quality prompts to effectively instruct LLMs poses a challenge for non-AI experts. Existing research in prompt engineering suggests somewhat fragmented optimization principles and designs empirically dependent prompt optimizers. Unfortunately, these endeavors lack a structured design template, incurring high learning costs and resulting in low reusability. Inspired by structured reusable programming languages, we propose LangGPT, a dual-layer prompt design framework as the programming language for LLMs. LangGPT has an easy-to-learn normative structure and provides an extended structure for migration and reuse. Experiments illustrate that LangGPT significantly enhances the capacity of LLMs to produce responses of superior quality compared to baselines. Moreover, LangGPT has proven effective in guiding LLMs to generate high-quality prompts. We have built a community on LangGPT to facilitate the tuition and sharing of prompt design. We also analyzed the ease of use and reusability of LangGPT through a community user survey.
Abstract:The popularity of multimodal large language models (MLLMs) has triggered a recent surge in research efforts dedicated to evaluating these models. Nevertheless, existing evaluation studies of MLLMs primarily focus on the comprehension and reasoning of unimodal (vision) content, neglecting performance evaluations in the domain of multimodal (vision-language) content understanding. Beyond multimodal reasoning, tasks related to multimodal content comprehension necessitate a profound understanding of multimodal contexts, achieved through the multimodal interaction to obtain a final answer. In this paper, we introduce a comprehensive assessment framework called MM-BigBench, which incorporates a diverse range of metrics to offer an extensive evaluation of the performance of various models and instructions across a wide spectrum of diverse multimodal content comprehension tasks. Consequently, our work complements research on the performance of MLLMs in multimodal comprehension tasks, achieving a more comprehensive and holistic evaluation of MLLMs. To begin, we employ the Best Performance metric to ascertain each model's performance upper bound on different datasets. Subsequently, the Mean Relative Gain metric offers an assessment of the overall performance of various models and instructions, while the Stability metric measures their sensitivity. Furthermore, previous research centers on evaluating models independently or solely assessing instructions, neglecting the adaptability between models and instructions. We propose the Adaptability metric to quantify the adaptability between models and instructions. Our paper evaluates a total of 20 language models (14 MLLMs) on 14 multimodal datasets spanning 6 tasks, with 10 instructions for each task, and derives novel insights. Our code will be released at https://github.com/declare-lab/MM-BigBench.
Abstract:Machine learning (ML) based systems have been suffering a lack of interpretability. To address this problem, counterfactual explanations (CEs) have been proposed. CEs are unique as they provide workable suggestions to users, in addition to explaining why a certain outcome was predicted. However, the application of CEs has been hindered by two main challenges, namely general user preferences and variable ML systems. User preferences, in particular, tend to be general rather than specific feature values. Additionally, CEs need to be customized to suit the variability of ML models, while also maintaining robustness even when these validation models change. To overcome these challenges, we propose several possible general user preferences that have been validated by user research and map them to the properties of CEs. We also introduce a new method called \uline{T}ree-based \uline{C}onditions \uline{O}ptional \uline{L}inks (T-COL), which has two optional structures and several groups of conditions for generating CEs that can be adapted to general user preferences. Meanwhile, a group of conditions lead T-COL to generate more robust CEs that have higher validity when the ML model is replaced. We compared the properties of CEs generated by T-COL experimentally under different user preferences and demonstrated that T-COL is better suited for accommodating user preferences and variable ML systems compared to baseline methods including Large Language Models.
Abstract:Large language models (LLMs) have received increasing attention. However, due to the complexity of its capabilities, how to rationally evaluate the capabilities of LLMs is still a task to be solved. We propose the RoCar method, which utilizes the defined basic schemas to randomly construct a task graph and generates natural language evaluation tasks based on the task graph to evaluate the reasoning and memory abilities of LLMs respectively. Due to the very large randomness of the task construction process, it is possible to ensure that none of the LLMs to be tested has directly learned the evaluation tasks, guaranteeing the fairness of the evaluation method.