Abstract:The intricate microstructure serves as the cornerstone for the composition/processing-structure-property (CPSP) connection in multiphase alloys. Traditional alloy design methods often overlook microstructural details, which diminishes the reliability and effectiveness of the outcomes. This study introduces an improved alloy design algorithm that integrates authentic microstructural information to establish precise CPSP relationships. The approach utilizes a deep-learning framework based on a variational autoencoder to map real microstructural data to a latent space, enabling the prediction of composition, processing steps, and material properties from the latent space vector. By integrating this deep learning model with a specific sampling strategy in the latent space, a novel, microstructure-centered algorithm for multiphase alloy design is developed. This algorithm is demonstrated through the design of a unified dual-phase steel, and the results are assessed at three performance levels. Moreover, an exploration into the latent vector space of the model highlights its seamless interpolation ability and its rich material information content. Notably, the current configuration of the latent space is particularly advantageous for alloy design, offering an exhaustive representation of microstructure, composition, processing, and property variations essential for multiphase alloys.
Abstract:Meta's LLaMA family has become one of the most powerful open-source Large Language Model (LLM) series. Notably, LLaMA3 models have recently been released and achieve impressive performance across various with super-large scale pre-training on over 15T tokens of data. Given the wide application of low-bit quantization for LLMs in resource-limited scenarios, we explore LLaMA3's capabilities when quantized to low bit-width. This exploration holds the potential to unveil new insights and challenges for low-bit quantization of LLaMA3 and other forthcoming LLMs, especially in addressing performance degradation problems that suffer in LLM compression. Specifically, we evaluate the 10 existing post-training quantization and LoRA-finetuning methods of LLaMA3 on 1-8 bits and diverse datasets to comprehensively reveal LLaMA3's low-bit quantization performance. Our experiment results indicate that LLaMA3 still suffers non-negligent degradation in these scenarios, especially in ultra-low bit-width. This highlights the significant performance gap under low bit-width that needs to be bridged in future developments. We expect that this empirical study will prove valuable in advancing future models, pushing the LLMs to lower bit-width with higher accuracy for being practical. Our project is released on https://github.com/Macaronlin/LLaMA3-Quantization and quantized LLaMA3 models are released in https://huggingface.co/LLMQ.
Abstract:With the advancement of diffusion models (DMs) and the substantially increased computational requirements, quantization emerges as a practical solution to obtain compact and efficient low-bit DMs. However, the highly discrete representation leads to severe accuracy degradation, hindering the quantization of diffusion models to ultra-low bit-widths. In this paper, we propose BinaryDM, a novel accurate quantization-aware training approach to push the weights of diffusion models towards the limit of 1-bit. Firstly, we present a Learnable Multi-basis Binarizer (LMB) to recover the representations generated by the binarized DM, which improves the information in details of representations crucial to the DM. Secondly, a Low-rank Representation Mimicking (LRM) is applied to enhance the binarization-aware optimization of the DM, alleviating the optimization direction ambiguity caused by fine-grained alignment. Moreover, a progressive initialization strategy is applied to training DMs to avoid convergence difficulties. Comprehensive experiments demonstrate that BinaryDM achieves significant accuracy and efficiency gains compared to SOTA quantization methods of DMs under ultra-low bit-widths. As the first binarization method for diffusion models, BinaryDM achieves impressive 16.0 times FLOPs and 27.1 times storage savings with 1-bit weight and 4-bit activation, showcasing its substantial advantages and potential for deploying DMs on resource-limited scenarios.
Abstract:The LoRA-finetuning quantization of LLMs has been extensively studied to obtain accurate yet compact LLMs for deployment on resource-constrained hardware. However, existing methods cause the quantized LLM to severely degrade and even fail to benefit from the finetuning of LoRA. This paper proposes a novel IR-QLoRA for pushing quantized LLMs with LoRA to be highly accurate through information retention. The proposed IR-QLoRA mainly relies on two technologies derived from the perspective of unified information: (1) statistics-based Information Calibration Quantization allows the quantized parameters of LLM to retain original information accurately; (2) finetuning-based Information Elastic Connection makes LoRA utilizes elastic representation transformation with diverse information. Comprehensive experiments show that IR-QLoRA can significantly improve accuracy across LLaMA and LLaMA2 families under 2-4 bit-widths, e.g., 4- bit LLaMA-7B achieves 1.4% improvement on MMLU compared with the state-of-the-art methods. The significant performance gain requires only a tiny 0.31% additional time consumption, revealing the satisfactory efficiency of our IRQLoRA. We highlight that IR-QLoRA enjoys excellent versatility, compatible with various frameworks (e.g., NormalFloat and Integer quantization) and brings general accuracy gains. The code is available at https://github.com/htqin/ir-qlora.
Abstract:Deep neural networks, such as the Deep-FSMN, have been widely studied for keyword spotting (KWS) applications while suffering expensive computation and storage. Therefore, network compression technologies like binarization are studied to deploy KWS models on edge. In this paper, we present a strong yet efficient binary neural network for KWS, namely BiFSMNv2, pushing it to the real-network accuracy performance. First, we present a Dual-scale Thinnable 1-bit-Architecture to recover the representation capability of the binarized computation units by dual-scale activation binarization and liberate the speedup potential from an overall architecture perspective. Second, we also construct a Frequency Independent Distillation scheme for KWS binarization-aware training, which distills the high and low-frequency components independently to mitigate the information mismatch between full-precision and binarized representations. Moreover, we implement BiFSMNv2 on ARMv8 real-world hardware with a novel Fast Bitwise Computation Kernel, which is proposed to fully utilize registers and increase instruction throughput. Comprehensive experiments show our BiFSMNv2 outperforms existing binary networks for KWS by convincing margins across different datasets and even achieves comparable accuracy with the full-precision networks (e.g., only 1.59% drop on Speech Commands V1-12). We highlight that benefiting from the compact architecture and optimized hardware kernel, BiFSMNv2 can achieve an impressive 25.1x speedup and 20.2x storage-saving on edge hardware.
Abstract:Manual examination of faecal smear samples to identify the existence of parasitic eggs is very time-consuming and can only be done by specialists. Therefore, an automated system is required to tackle this problem since it can relate to serious intestinal parasitic infections. This paper reviews the ICIP 2022 Challenge on parasitic egg detection and classification in microscopic images. We describe a new dataset for this application, which is the largest dataset of its kind. The methods used by participants in the challenge are summarised and discussed along with their results.
Abstract:The deep neural networks, such as the Deep-FSMN, have been widely studied for keyword spotting (KWS) applications. However, computational resources for these networks are significantly constrained since they usually run on-call on edge devices. In this paper, we present BiFSMN, an accurate and extreme-efficient binary neural network for KWS. We first construct a High-frequency Enhancement Distillation scheme for the binarization-aware training, which emphasizes the high-frequency information from the full-precision network's representation that is more crucial for the optimization of the binarized network. Then, to allow the instant and adaptive accuracy-efficiency trade-offs at runtime, we also propose a Thinnable Binarization Architecture to further liberate the acceleration potential of the binarized network from the topology perspective. Moreover, we implement a Fast Bitwise Computation Kernel for BiFSMN on ARMv8 devices which fully utilizes registers and increases instruction throughput to push the limit of deployment efficiency. Extensive experiments show that BiFSMN outperforms existing binarization methods by convincing margins on various datasets and is even comparable with the full-precision counterpart (e.g., less than 3% drop on Speech Commands V1-12). We highlight that benefiting from the thinnable architecture and the optimized 1-bit implementation, BiFSMN can achieve an impressive 22.3x speedup and 15.5x storage-saving on real-world edge hardware.
Abstract:A significant number of researchers have recently applied deep learning methods to image fusion. However, most of these works either require a large amount of training data or depend on pre-trained models or frameworks. This inevitably encounters a shortage of training data or a mismatch between the framework and the actual problem. Recently, the publication of Deep Image Prior (DIP) method made it possible to do image restoration totally training-data-free. However, the original design of DIP is hard to be generalized to multi-image processing problems. This paper introduces a novel loss calculation structure, in the framework of DIP, while formulating image fusion as an inverse problem. This enables the extension of DIP to general multisensor/multifocus image fusion problems. Secondly, we propose a multi-channel approach to improve the effect of DIP. Finally, an evaluation is conducted using several commonly used image fusion assessment metrics. The results are compared with state-of-the-art traditional and deep learning image fusion methods. Our method outperforms previous techniques for a range of metrics. In particular, it is shown to provide the best objective results for most metrics when applied to medical images.
Abstract:This paper was originally submitted to Xinova as a response to a Request for Invention (RFI) on new event monitoring methods. In this paper, a new object tracking algorithm using multiple cameras for surveillance applications is proposed. The proposed system can detect sudden-appearance-changes and occlusions using a hidden Markovian statistical model. The experimental results confirm that our system detect the sudden-appearance changes and occlusions reliably.
Abstract:This paper considers the clustering problem for large data sets. We propose an approach based on distributed optimization. The clustering problem is formulated as an optimization problem of maximizing the classification gain. We show that the optimization problem can be reformulated and decomposed into small-scale sub optimization problems by using the Dantzig-Wolfe decomposition method. Generally speaking, the Dantzig-Wolfe method can only be used for convex optimization problems, where the duality gaps are zero. Even though, the considered optimization problem in this paper is non-convex, we prove that the duality gap goes to zero, as the problem size goes to infinity. Therefore, the Dantzig-Wolfe method can be applied here. In the proposed approach, the clustering problem is iteratively solved by a group of computers coordinated by one center processor, where each computer solves one independent small-scale sub optimization problem during each iteration, and only a small amount of data communication is needed between the computers and center processor. Numerical results show that the proposed approach is effective and efficient.