Abstract:Recent studies have raised significant concerns regarding the vulnerability of Large Vision Language Models (LVLMs) to maliciously injected or perturbed input images, which can mislead their responses. Existing defense methods show that such vision attacks are sensitive to image modifications especially cropping, using majority voting across responses of modified images as corrected responses. However, these modifications often result in partial images and distort the semantics, which reduces response quality on clean images after voting. Instead of directly using responses from partial images for voting, we investigate using them to supervise the LVLM's responses to the original images. We propose a black-box, training-free method called DPS (Defense through Partial-Perception Supervision). In this approach, the model is prompted using the responses generated by a model that perceives only a partial image. With DPS, the model can adjust its response based on partial image understanding when under attack, while confidently maintaining its original response for clean input. Our findings show that the weak model can supervise the strong model: when faced with an attacked input, the strong model becomes less confident and adjusts its response based on the weak model's partial understanding, effectively defending against the attack. With clean input, it confidently maintains its original response. Empirical experiments show our method outperforms the baseline, cutting the average attack success rate by 76.3% across six datasets on three popular models.
Abstract:Large Language Models (LLMs) have emerged as a transformative AI paradigm, profoundly influencing daily life through their exceptional language understanding and contextual generation capabilities. Despite their remarkable performance, LLMs face a critical challenge: the propensity to produce unreliable outputs due to the inherent limitations of their learning-based nature. Formal methods (FMs), on the other hand, are a well-established computation paradigm that provides mathematically rigorous techniques for modeling, specifying, and verifying the correctness of systems. FMs have been extensively applied in mission-critical software engineering, embedded systems, and cybersecurity. However, the primary challenge impeding the deployment of FMs in real-world settings lies in their steep learning curves, the absence of user-friendly interfaces, and issues with efficiency and adaptability. This position paper outlines a roadmap for advancing the next generation of trustworthy AI systems by leveraging the mutual enhancement of LLMs and FMs. First, we illustrate how FMs, including reasoning and certification techniques, can help LLMs generate more reliable and formally certified outputs. Subsequently, we highlight how the advanced learning capabilities and adaptability of LLMs can significantly enhance the usability, efficiency, and scalability of existing FM tools. Finally, we show that unifying these two computation paradigms -- integrating the flexibility and intelligence of LLMs with the rigorous reasoning abilities of FMs -- has transformative potential for the development of trustworthy AI software systems. We acknowledge that this integration has the potential to enhance both the trustworthiness and efficiency of software engineering practices while fostering the development of intelligent FM tools capable of addressing complex yet real-world challenges.
Abstract:In the field of automated programming, large language models (LLMs) have demonstrated foundational generative capabilities when given detailed task descriptions. However, their current functionalities are primarily limited to function-level development, restricting their effectiveness in complex project environments and specific application scenarios, such as complicated image-processing tasks. This paper presents a multi-agent framework that utilises a hybrid set of LLMs, including GPT-4o and locally deployed open-source models, which collaboratively complete auto-programming tasks. Each agent plays a distinct role in the software development cycle, collectively forming a virtual organisation that works together to produce software products. By establishing a tree-structured thought distribution and development mechanism across project, module, and function levels, this framework offers a cost-effective and efficient solution for code generation. We evaluated our approach using benchmark datasets, and the experimental results demonstrate that VisionCoder significantly outperforms existing methods in image processing auto-programming tasks.
Abstract:Federated Unlearning (FU) enables clients to selectively remove the influence of specific data from a trained federated learning model, addressing privacy concerns and regulatory requirements. However, existing FU methods often struggle to balance effective erasure with model utility preservation, especially for class-level unlearning in non-IID settings. We propose Federated Unlearning via Class-aware Representation Transformation (FUCRT), a novel method that achieves unlearning through class-aware representation transformation. FUCRT employs two key components: (1) a transformation class selection strategy to identify optimal forgetting directions, and (2) a transformation alignment technique using dual class-aware contrastive learning to ensure consistent transformations across clients. Extensive experiments on four datasets demonstrate FUCRT's superior performance in terms of erasure guarantee, model utility preservation, and efficiency. FUCRT achieves complete (100\%) erasure of unlearning classes while maintaining or improving performance on remaining classes, outperforming state-of-the-art baselines across both IID and Non-IID settings. Analysis of the representation space reveals FUCRT's ability to effectively merge unlearning class representations with the transformation class from remaining classes, closely mimicking the model retrained from scratch.
Abstract:GUI test migration aims to produce test cases with events and assertions to test specific functionalities of a target app. Existing migration approaches typically focus on the widget-mapping paradigm that maps widgets from source apps to target apps. However, since different apps may implement the same functionality in different ways, direct mapping may result in incomplete or buggy test cases, thus significantly impacting the effectiveness of testing target functionality and the practical applicability. In this paper, we propose a new migration paradigm (i.e., abstraction-concretization paradigm) that first abstracts the test logic for the target functionality and then utilizes this logic to generate the concrete GUI test case. Furthermore, we introduce MACdroid, the first approach that migrates GUI test cases based on this paradigm. Specifically, we propose an abstraction technique that utilizes source test cases from source apps targeting the same functionality to extract a general test logic for that functionality. Then, we propose a concretization technique that utilizes the general test logic to guide an LLM in generating the corresponding GUI test case (including events and assertions) for the target app. We evaluate MACdroid on two widely-used datasets (including 31 apps, 34 functionalities, and 123 test cases). On the FrUITeR dataset, the test cases generated by MACdroid successfully test 64% of the target functionalities, improving the baselines by 191%. On the Lin dataset, MACdroid successfully tests 75% of the target functionalities, outperforming the baselines by 42%. These results underscore the effectiveness of MACdroid in GUI test migration.
Abstract:Contribution evaluation in federated learning (FL) has become a pivotal research area due to its applicability across various domains, such as detecting low-quality datasets, enhancing model robustness, and designing incentive mechanisms. Existing contribution evaluation methods, which primarily rely on data volume, model similarity, and auxiliary test datasets, have shown success in diverse scenarios. However, their effectiveness often diminishes due to the heterogeneity of data distributions, presenting a significant challenge to their applicability. In response, this paper explores contribution evaluation in FL from an entirely new perspective of representation. In this work, we propose a new method for the contribution evaluation of heterogeneous participants in federated learning (FLCE), which introduces a novel indicator \emph{class contribution momentum} to conduct refined contribution evaluation. Our core idea is the construction and application of the class contribution momentum indicator from individual, relative, and holistic perspectives, thereby achieving an effective and efficient contribution evaluation of heterogeneous participants without relying on an auxiliary test dataset. Extensive experimental results demonstrate the superiority of our method in terms of fidelity, effectiveness, efficiency, and heterogeneity across various scenarios.
Abstract:Program refinement involves correctness-preserving transformations from formal high-level specification statements into executable programs. Traditional verification tool support for program refinement is highly interactive and lacks automation. On the other hand, the emergence of large language models (LLMs) enables automatic code generations from informal natural language specifications. However, code generated by LLMs is often unreliable. Moreover, the opaque procedure from specification to code provided by LLM is an uncontrolled black box. We propose LLM4PR, a tool that combines formal program refinement techniques with informal LLM-based methods to (1) transform the specification to preconditions and postconditions, (2) automatically build prompts based on refinement calculus, (3) interact with LLM to generate code, and finally, (4) verify that the generated code satisfies the conditions of refinement calculus, thus guaranteeing the correctness of the code. We have implemented our tool using GPT4, Coq, and Coqhammer, and evaluated it on the HumanEval and EvalPlus datasets.
Abstract:Monitoring the training of neural networks is essential for identifying potential data anomalies, enabling timely interventions and conserving significant computational resources. Apart from the commonly used metrics such as losses and validation accuracies, the hidden representation could give more insight into the model progression. To this end, we introduce SentryCam, an automated, real-time visualization tool that reveals the progression of hidden representations during training. Our results show that this visualization offers a more comprehensive view of the learning dynamics compared to basic metrics such as loss and accuracy over various datasets. Furthermore, we show that SentryCam could facilitate detailed analysis such as task transfer and catastrophic forgetting to a continual learning setting. The code is available at https://github.com/xianglinyang/SentryCam.
Abstract:Vision-Large-Language-Models (Vision-LLMs) are increasingly being integrated into autonomous driving (AD) systems due to their advanced visual-language reasoning capabilities, targeting the perception, prediction, planning, and control mechanisms. However, Vision-LLMs have demonstrated susceptibilities against various types of adversarial attacks, which would compromise their reliability and safety. To further explore the risk in AD systems and the transferability of practical threats, we propose to leverage typographic attacks against AD systems relying on the decision-making capabilities of Vision-LLMs. Different from the few existing works developing general datasets of typographic attacks, this paper focuses on realistic traffic scenarios where these attacks can be deployed, on their potential effects on the decision-making autonomy, and on the practical ways in which these attacks can be physically presented. To achieve the above goals, we first propose a dataset-agnostic framework for automatically generating false answers that can mislead Vision-LLMs' reasoning. Then, we present a linguistic augmentation scheme that facilitates attacks at image-level and region-level reasoning, and we extend it with attack patterns against multiple reasoning tasks simultaneously. Based on these, we conduct a study on how these attacks can be realized in physical traffic scenarios. Through our empirical study, we evaluate the effectiveness, transferability, and realizability of typographic attacks in traffic scenes. Our findings demonstrate particular harmfulness of the typographic attacks against existing Vision-LLMs (e.g., LLaVA, Qwen-VL, VILA, and Imp), thereby raising community awareness of vulnerabilities when incorporating such models into AD systems. We will release our source code upon acceptance.
Abstract:We present PAODING, a toolkit to debloat pretrained neural network models through the lens of data-free pruning. To preserve the model fidelity, PAODING adopts an iterative process, which dynamically measures the effect of deleting a neuron to identify candidates that have the least impact to the output layer. Our evaluation shows that PAODING can significantly reduce the model size, generalize on different datasets and models, and meanwhile preserve the model fidelity in terms of test accuracy and adversarial robustness. PAODING is publicly available on PyPI via https://pypi.org/project/paoding-dl.