Abstract:Backdoor attacks embed hidden associations between triggers and targets in deep neural networks (DNNs), causing them to predict the target when a trigger is present while maintaining normal behavior otherwise. Physical backdoor attacks, which use physical objects as triggers, are feasible but lack remote control, temporal stealthiness, flexibility, and mobility. To overcome these limitations, in this work, we propose a new type of backdoor triggers utilizing lasers that feature long-distance transmission and instant-imaging properties. Based on the laser-based backdoor triggers, we present a physical backdoor attack, called LaserGuider, which possesses remote control ability and achieves high temporal stealthiness, flexibility, and mobility. We also introduce a systematic approach to optimize laser parameters for improving attack effectiveness. Our evaluation on traffic sign recognition DNNs, critical in autonomous vehicles, demonstrates that LaserGuider with three different laser-based triggers achieves over 90% attack success rate with negligible impact on normal inputs. Additionally, we release LaserMark, the first dataset of real world traffic signs stamped with physical laser spots, to support further research in backdoor attacks and defenses.
Abstract:Singing voice conversion (SVC) automates song covers by converting one singer's singing voice into another target singer's singing voice with the original lyrics and melody. However, it raises serious concerns about copyright and civil right infringements to multiple entities. This work proposes SongBsAb, the first proactive approach to mitigate unauthorized SVC-based illegal song covers. SongBsAb introduces human-imperceptible perturbations to singing voices before releasing them, so that when they are used, the generation process of SVC will be interfered, resulting in unexpected singing voices. SongBsAb features a dual prevention effect by causing both (singer) identity disruption and lyric disruption, namely, the SVC-covered singing voice neither imitates the target singer nor preserves the original lyrics. To improve the imperceptibility of perturbations, we refine a psychoacoustic model-based loss with the backing track as an additional masker, a unique accompanying element for singing voices compared to ordinary speech voices. To enhance the transferability, we propose to utilize a frame-level interaction reduction-based loss. We demonstrate the prevention effectiveness, utility, and robustness of SongBsAb on three SVC models and two datasets using both objective and human study-based subjective metrics. Our work fosters an emerging research direction for mitigating illegal automated song covers.
Abstract:Leveraging recent advancements in large language models, modern neural code completion models have demonstrated the capability to generate highly accurate code suggestions. However, their massive size poses challenges in terms of computational costs and environmental impact, hindering their widespread adoption in practical scenarios. Dynamic inference emerges as a promising solution, as it allocates minimal computation during inference while maintaining the model's performance. In this research, we explore dynamic inference within the context of code completion. Initially, we conducted an empirical investigation on GPT-2, focusing on the inference capabilities of intermediate layers for code completion. We found that 54.4% of tokens can be accurately generated using just the first layer, signifying significant computational savings potential. Moreover, despite using all layers, the model still fails to predict 14.5% of tokens correctly, and the subsequent completions continued from them are rarely considered helpful, with only a 4.2% Acceptance Rate. These findings motivate our exploration of dynamic inference in code completion and inspire us to enhance it with a decision-making mechanism that stops the generation of incorrect code. We thus propose a novel dynamic inference method specifically tailored for code completion models. This method aims not only to produce correct predictions with largely reduced computation but also to prevent incorrect predictions proactively. Our extensive evaluation shows that it can averagely skip 1.7 layers out of 16 layers in the models, leading to an 11.2% speedup with only a marginal 1.1% reduction in ROUGE-L.
Abstract:Membership inference attacks allow adversaries to determine whether a particular example was contained in the model's training dataset. While previous works have confirmed the feasibility of such attacks in various applications, none has focused on speaker recognition (SR), a promising voice-based biometric recognition technique. In this work, we propose SLMIA-SR, the first membership inference attack tailored to SR. In contrast to conventional example-level attack, our attack features speaker-level membership inference, i.e., determining if any voices of a given speaker, either the same as or different from the given inference voices, have been involved in the training of a model. It is particularly useful and practical since the training and inference voices are usually distinct, and it is also meaningful considering the open-set nature of SR, namely, the recognition speakers were often not present in the training data. We utilize intra-closeness and inter-farness, two training objectives of SR, to characterize the differences between training and non-training speakers and quantify them with two groups of features driven by carefully-established feature engineering to mount the attack. To improve the generalizability of our attack, we propose a novel mixing ratio training strategy to train attack models. To enhance the attack performance, we introduce voice chunk splitting to cope with the limited number of inference voices and propose to train attack models dependent on the number of inference voices. Our attack is versatile and can work in both white-box and black-box scenarios. Additionally, we propose two novel techniques to reduce the number of black-box queries while maintaining the attack performance. Extensive experiments demonstrate the effectiveness of SLMIA-SR.
Abstract:Code datasets are of immense value for training neural-network-based code completion models, where companies or organizations have made substantial investments to establish and process these datasets. Unluckily, these datasets, either built for proprietary or public usage, face the high risk of unauthorized exploits, resulting from data leakages, license violations, etc. Even worse, the ``black-box'' nature of neural models sets a high barrier for externals to audit their training datasets, which further connives these unauthorized usages. Currently, watermarking methods have been proposed to prohibit inappropriate usage of image and natural language datasets. However, due to domain specificity, they are not directly applicable to code datasets, leaving the copyright protection of this emerging and important field of code data still exposed to threats. To fill this gap, we propose a method, named CodeMark, to embed user-defined imperceptible watermarks into code datasets to trace their usage in training neural code completion models. CodeMark is based on adaptive semantic-preserving transformations, which preserve the exact functionality of the code data and keep the changes covert against rule-breakers. We implement CodeMark in a toolkit and conduct an extensive evaluation of code completion models. CodeMark is validated to fulfill all desired properties of practical watermarks, including harmlessness to model accuracy, verifiability, robustness, and imperceptibility.
Abstract:Federated learning (FL), as a decentralized machine learning solution to the protection of users' private data, has become an important learning paradigm in recent years, especially since the enforcement of stricter laws and regulations in most countries. Therefore, a variety of FL frameworks are released to facilitate the development and application of federated learning. Despite the considerable amount of research on the security and privacy of FL models and systems, the security issues in FL frameworks have not been systematically studied yet. In this paper, we conduct the first empirical study on 1,112 FL framework bugs to investigate their characteristics. These bugs are manually collected, classified, and labeled from 12 open-source FL frameworks on GitHub. In detail, we construct taxonomies of 15 symptoms, 12 root causes, and 20 fix patterns of these bugs and investigate their correlations and distributions on 23 logical components and two main application scenarios. From the results of our study, we present nine findings, discuss their implications, and propound several suggestions to FL framework developers and security researchers on the FL frameworks.
Abstract:Deep neural networks, (DNNs, a.k.a. NNs), have been widely used in various tasks and have been proven to be successful. However, the accompanied expensive computing and storage costs make the deployments in resource-constrained devices a significant concern. To solve this issue, quantization has emerged as an effective way to reduce the costs of DNNs with little accuracy degradation by quantizing floating-point numbers to low-width fixed-point representations. Quantized neural networks (QNNs) have been developed, with binarized neural networks (BNNs) restricted to binary values as a special case. Another concern about neural networks is their vulnerability and lack of interpretability. Despite the active research on trustworthy of DNNs, few approaches have been proposed to QNNs. To this end, this paper presents an automata-theoretic approach to synthesizing BNNs that meet designated properties. More specifically, we define a temporal logic, called BLTL, as the specification language. We show that each BLTL formula can be transformed into an automaton on finite words. To deal with the state-explosion problem, we provide a tableau-based approach in real implementation. For the synthesis procedure, we utilize SMT solvers to detect the existence of a model (i.e., a BNN) in the construction process. Notably, synthesis provides a way to determine the hyper-parameters of the network before training.Moreover, we experimentally evaluate our approach and demonstrate its effectiveness in improving the individual fairness and local robustness of BNNs while maintaining accuracy to a great extent.
Abstract:Current adversarial attacks against speaker recognition systems (SRSs) require either white-box access or heavy black-box queries to the target SRS, thus still falling behind practical attacks against proprietary commercial APIs and voice-controlled devices. To fill this gap, we propose QFA2SR, an effective and imperceptible query-free black-box attack, by leveraging the transferability of adversarial voices. To improve transferability, we present three novel methods, tailored loss functions, SRS ensemble, and time-freq corrosion. The first one tailors loss functions to different attack scenarios. The latter two augment surrogate SRSs in two different ways. SRS ensemble combines diverse surrogate SRSs with new strategies, amenable to the unique scoring characteristics of SRSs. Time-freq corrosion augments surrogate SRSs by incorporating well-designed time-/frequency-domain modification functions, which simulate and approximate the decision boundary of the target SRS and distortions introduced during over-the-air attacks. QFA2SR boosts the targeted transferability by 20.9%-70.7% on four popular commercial APIs (Microsoft Azure, iFlytek, Jingdong, and TalentedSoft), significantly outperforming existing attacks in query-free setting, with negligible effect on the imperceptibility. QFA2SR is also highly effective when launched over the air against three wide-spread voice assistants (Google Assistant, Apple Siri, and TMall Genie) with 60%, 46%, and 70% targeted transferability, respectively.
Abstract:Deep learning has become a promising programming paradigm in software development, owing to its surprising performance in solving many challenging tasks. Deep neural networks (DNNs) are increasingly being deployed in practice, but are limited on resource-constrained devices owing to their demand for computational power. Quantization has emerged as a promising technique to reduce the size of DNNs with comparable accuracy as their floating-point numbered counterparts. The resulting quantized neural networks (QNNs) can be implemented energy-efficiently. Similar to their floating-point numbered counterparts, quality assurance techniques for QNNs, such as testing and formal verification, are essential but are currently less explored. In this work, we propose a novel and efficient formal verification approach for QNNs. In particular, we are the first to propose an encoding that reduces the verification problem of QNNs into the solving of integer linear constraints, which can be solved using off-the-shelf solvers. Our encoding is both sound and complete. We demonstrate the application of our approach on local robustness verification and maximum robustness radius computation. We implement our approach in a prototype tool QVIP and conduct a thorough evaluation. Experimental results on QNNs with different quantization bits confirm the effectiveness and efficiency of our approach, e.g., two orders of magnitude faster and able to solve more verification tasks in the same time limit than the state-of-the-art methods.
Abstract:While deep neural networks (DNNs) have demonstrated impressive performance in solving many challenging tasks, they are limited to resource-constrained devices owing to their demand for computation power and storage space. Quantization is one of the most promising techniques to address this issue by quantizing the weights and/or activation tensors of a DNN into lower bit-width fixed-point numbers. While quantization has been empirically shown to introduce minor accuracy loss, it lacks formal guarantees on that, especially when the resulting quantized neural networks (QNNs) are deployed in safety-critical applications. A majority of existing verification methods focus exclusively on individual neural networks, either DNNs or QNNs. While promising attempts have been made to verify the quantization error bound between DNNs and their quantized counterparts, they are not complete and more importantly do not support fully quantified neural networks, namely, only weights are quantized. To fill this gap, in this work, we propose a quantization error bound verification method (QEBVerif), where both weights and activation tensors are quantized. QEBVerif consists of two analyses: a differential reachability analysis (DRA) and a mixed-integer linear programming (MILP) based verification method. DRA performs difference analysis between the DNN and its quantized counterpart layer-by-layer to efficiently compute a tight quantization error interval. If it fails to prove the error bound, then we encode the verification problem into an equivalent MILP problem which can be solved by off-the-shelf solvers. Thus, QEBVerif is sound, complete, and arguably efficient. We implement QEBVerif in a tool and conduct extensive experiments, showing its effectiveness and efficiency.