Abstract:The use of Transformer architectures has facilitated remarkable progress in speech enhancement. Training Transformers using substantially long speech utterances is often infeasible as self-attention suffers from quadratic complexity. It is a critical and unexplored challenge for a Transformer-based speech enhancement model to learn from short speech utterances and generalize to longer ones. In this paper, we conduct comprehensive experiments to explore the length generalization problem in speech enhancement with Transformer. Our findings first establish that position embedding provides an effective instrument to alleviate the impact of utterance length on Transformer-based speech enhancement. Specifically, we explore four different position embedding schemes to enable length generalization. The results confirm the superiority of relative position embeddings (RPEs) over absolute PE (APEs) in length generalization.
Abstract:Transformer architecture has enabled recent progress in speech enhancement. Since Transformers are position-agostic, positional encoding is the de facto standard component used to enable Transformers to distinguish the order of elements in a sequence. However, it remains unclear how positional encoding exactly impacts speech enhancement based on Transformer architectures. In this paper, we perform a comprehensive empirical study evaluating five positional encoding methods, i.e., Sinusoidal and learned absolute position embedding (APE), T5-RPE, KERPLE, as well as the Transformer without positional encoding (No-Pos), across both causal and noncausal configurations. We conduct extensive speech enhancement experiments, involving spectral mapping and masking methods. Our findings establish that positional encoding is not quite helpful for the models in a causal configuration, which indicates that causal attention may implicitly incorporate position information. In a noncausal configuration, the models significantly benefit from the use of positional encoding. In addition, we find that among the four position embeddings, relative position embeddings outperform APEs.
Abstract:\textit{Objective:} Conventional EEG-based auditory attention detection (AAD) is achieved by comparing the time-varying speech stimuli and the elicited EEG signals. However, in order to obtain reliable correlation values, these methods necessitate a long decision window, resulting in a long detection latency. Humans have a remarkable ability to recognize and follow a known speaker, regardless of the spoken content. In this paper, we seek to detect the attended speaker among the pre-enrolled speakers from the elicited EEG signals. In this manner, we avoid relying on the speech stimuli for AAD at run-time. In doing so, we propose a novel EEG-based attended speaker detection (E-ASD) task. \textit{Methods:} We encode a speaker's voice with a fixed dimensional vector, known as speaker embedding, and project it to an audio-derived voice signature, which characterizes the speaker's unique voice regardless of the spoken content. We hypothesize that such a voice signature also exists in the listener's brain that can be decoded from the elicited EEG signals, referred to as EEG-derived voice signature. By comparing the audio-derived voice signature and the EEG-derived voice signature, we are able to effectively detect the attended speaker in the listening brain. \textit{Results:} Experiments show that E-ASD can effectively detect the attended speaker from the 0.5s EEG decision windows, achieving 99.78\% AAD accuracy, 99.94\% AUC, and 0.27\% EER. \textit{Conclusion:} We conclude that it is possible to derive the attended speaker's voice signature from the EEG signals so as to detect the attended speaker in a listening brain. \textit{Significance:} We present the first proof of concept for detecting the attended speaker from the elicited EEG signals in a cocktail party environment. The successful implementation of E-ASD marks a non-trivial, but crucial step towards smart hearing aids.
Abstract:Deep neural networks, (DNNs, a.k.a. NNs), have been widely used in various tasks and have been proven to be successful. However, the accompanied expensive computing and storage costs make the deployments in resource-constrained devices a significant concern. To solve this issue, quantization has emerged as an effective way to reduce the costs of DNNs with little accuracy degradation by quantizing floating-point numbers to low-width fixed-point representations. Quantized neural networks (QNNs) have been developed, with binarized neural networks (BNNs) restricted to binary values as a special case. Another concern about neural networks is their vulnerability and lack of interpretability. Despite the active research on trustworthy of DNNs, few approaches have been proposed to QNNs. To this end, this paper presents an automata-theoretic approach to synthesizing BNNs that meet designated properties. More specifically, we define a temporal logic, called BLTL, as the specification language. We show that each BLTL formula can be transformed into an automaton on finite words. To deal with the state-explosion problem, we provide a tableau-based approach in real implementation. For the synthesis procedure, we utilize SMT solvers to detect the existence of a model (i.e., a BNN) in the construction process. Notably, synthesis provides a way to determine the hyper-parameters of the network before training.Moreover, we experimentally evaluate our approach and demonstrate its effectiveness in improving the individual fairness and local robustness of BNNs while maintaining accuracy to a great extent.
Abstract:The use of Transformer represents a recent success in speech enhancement. However, as its core component, self-attention suffers from quadratic complexity, which is computationally prohibited for long speech recordings. Moreover, it allows each time frame to attend to all time frames, neglecting the strong local correlations of speech signals. This study presents a simple yet effective sparse self-attention for speech enhancement, called ripple attention, which simultaneously performs fine- and coarse-grained modeling for local and global dependencies, respectively. Specifically, we employ local band attention to enable each frame to attend to its closest neighbor frames in a window at fine granularity, while employing dilated attention outside the window to model the global dependencies at a coarse granularity. We evaluate the efficacy of our ripple attention for speech enhancement on two commonly used training objectives. Extensive experimental results consistently confirm the superior performance of the ripple attention design over standard full self-attention, blockwise attention, and dual-path attention (Sep-Former) in terms of speech quality and intelligibility.