corresponding author
Abstract:Teaching large language models (LLMs) to generate text with citations to evidence sources can mitigate hallucinations and enhance verifiability in information-seeking systems. However, improving this capability requires high-quality attribution data, which is costly and labor-intensive. Inspired by recent advances in self-improvement that enhance LLMs without manual annotation, we present START, a Self-Taught AttRibuTion framework for iteratively improving the attribution capability of LLMs. First, to prevent models from stagnating due to initially insufficient supervision signals, START leverages the model to self-construct synthetic training data for warming up. To further self-improve the model's attribution ability, START iteratively utilizes fine-grained preference supervision signals constructed from its sampled responses to encourage robust, comprehensive, and attributable generation. Experiments on three open-domain question-answering datasets, covering long-form QA and multi-step reasoning, demonstrate significant performance gains of 25.13% on average without relying on human annotations and more advanced models. Further analysis reveals that START excels in aggregating information across multiple sources.
Abstract:Protein function prediction is a crucial task in bioinformatics, with significant implications for understanding biological processes and disease mechanisms. While the relationship between sequence and function has been extensively explored, translating protein structure to function continues to present substantial challenges. Various models, particularly, CNN and graph-based deep learning approaches that integrate structural and functional data, have been proposed to address these challenges. However, these methods often fall short in elucidating the functional significance of key residues essential for protein functionality, as they predominantly adopt a retrospective perspective, leading to suboptimal performance. Inspired by region proposal networks in computer vision, we introduce the Protein Region Proposal Network (ProteinRPN) for accurate protein function prediction. Specifically, the region proposal module component of ProteinRPN identifies potential functional regions (anchors) which are refined through the hierarchy-aware node drop pooling layer favoring nodes with defined secondary structures and spatial proximity. The representations of the predicted functional nodes are enriched using attention mechanisms and subsequently fed into a Graph Multiset Transformer, which is trained with supervised contrastive (SupCon) and InfoNCE losses on perturbed protein structures. Our model demonstrates significant improvements in predicting Gene Ontology (GO) terms, effectively localizing functional residues within protein structures. The proposed framework provides a robust, scalable solution for protein function annotation, advancing the understanding of protein structure-function relationships in computational biology.
Abstract:Despite the impressive performance on information-seeking tasks, large language models (LLMs) still struggle with hallucinations. Attributed LLMs, which augment generated text with in-line citations, have shown potential in mitigating hallucinations and improving verifiability. However, current approaches suffer from suboptimal citation quality due to their reliance on in-context learning. Furthermore, the practice of citing only coarse document identifiers makes it challenging for users to perform fine-grained verification. In this work, we introduce FRONT, a training framework designed to teach LLMs to generate Fine-Grained Grounded Citations. By grounding model outputs in fine-grained supporting quotes, these quotes guide the generation of grounded and consistent responses, not only improving citation quality but also facilitating fine-grained verification. Experiments on the ALCE benchmark demonstrate the efficacy of FRONT in generating superior grounded responses and highly supportive citations. With LLaMA-2-7B, the framework significantly outperforms all the baselines, achieving an average of 14.21% improvement in citation quality across all datasets, even surpassing ChatGPT.
Abstract:Cross-domain recommendation has attracted substantial interest in industrial apps such as Meituan, which serves multiple business domains via knowledge transfer and meets the diverse interests of users. However, existing methods typically follow an implicit modeling paradigm that blends the knowledge from both the source and target domains, and design intricate network structures to share learned embeddings or patterns between domains to improve recommendation accuracy. Since the transfer of interest signals is unsupervised, these implicit paradigms often struggle with the negative transfer resulting from differences in service functions and presentation forms across different domains. In this paper, we propose a simple and effective EXplicit Interest Transfer framework named EXIT to address the stated challenge. Specifically, we propose a novel label combination approach that enables the model to directly learn beneficial source domain interests through supervised learning, while excluding inappropriate interest signals. Moreover, we introduce a scene selector network to model the interest transfer intensity under fine-grained scenes. Offline experiments conducted on the industrial production dataset and online A/B tests validate the superiority and effectiveness of our proposed framework. Without complex network structures or training processes, EXIT can be easily deployed in the industrial recommendation system. EXIT has been successfully deployed in the online homepage recommendation system of Meituan App, serving the main traffic.
Abstract:This work addresses the problem of intelligent reflecting surface (IRS) assisted target sensing in a non-line-of-sight (NLOS) scenario, where an IRS is employed to facilitate the radar/access point (AP) to sense the targets when the line-of-sight (LOS) path between the AP and the target is blocked by obstacles. To sense the targets, the AP transmits a train of uniformly-spaced orthogonal frequency division multiplexing (OFDM) pulses, and then perceives the targets based on the echoes from the AP-IRS-targets-IRS-AP channel. To resolve an inherent scaling ambiguity associated with IRS-assisted NLOS sensing, we propose a two-phase sensing scheme by exploiting the diversity in the illumination pattern of the IRS across two different phases. Specifically, the received echo signals from the two phases are formulated as third-order tensors. Then a canonical polyadic (CP) decomposition-based method is developed to estimate each target's parameters including the direction of arrival (DOA), Doppler shift and time delay. Our analysis reveals that the proposed method achieves reliable NLOS sensing using a modest quantity of pulse/subcarrier resources. Simulation results are provided to show the effectiveness of the proposed method under the challenging scenario where the degrees-of-freedom provided by the AP-IRS channel are not enough for resolving the scaling ambiguity.
Abstract:Though advanced in understanding visual information with human languages, Large Vision-Language Models (LVLMs) still suffer from multimodal hallucinations. A natural concern is that during multimodal interaction, the generated hallucinations could influence the LVLMs' subsequent generation. Thus, we raise a question: When presented with a query relevant to the previously generated hallucination, will LVLMs be misled and respond incorrectly, even though the ground visual information exists? To answer this, we propose a framework called MMHalSnowball to evaluate LVLMs' behaviors when encountering generated hallucinations, where LVLMs are required to answer specific visual questions within a curated hallucinatory conversation. Crucially, our experiment shows that the performance of open-source LVLMs drops by at least $31\%$, indicating that LVLMs are prone to accept the generated hallucinations and make false claims that they would not have supported without distractions. We term this phenomenon Multimodal Hallucination Snowballing. To mitigate this, we further propose a training-free method called Residual Visual Decoding, where we revise the output distribution of LVLMs with the one derived from the residual visual input, providing models with direct access to the visual information. Experiments show that our method can mitigate more than $24\%$ of the snowballed multimodal hallucination while maintaining capabilities.
Abstract:Large language model unlearning has gained increasing attention due to its potential to mitigate security and privacy concerns. Current research predominantly focuses on Instance-level unlearning, specifically aiming at forgetting predefined instances of sensitive content. However, a notable gap still exists in exploring the deletion of complete entity-related information, which is crucial in many real-world scenarios, such as copyright protection. To this end, we propose a novel task of Entity-level unlearning, where the entity-related knowledge within the target model is supposed to be entirely erased. Given the challenge of practically accessing all entity-related knowledge within a model, we begin by simulating entity-level unlearning scenarios through fine-tuning models to introduce pseudo entities. Following this, we develop baseline methods inspired by trending unlearning techniques and conduct a detailed comparison of their effectiveness in this task. Extensive experiments reveal that current unlearning algorithms struggle to achieve effective entity-level unlearning. Additionally, our analyses further indicate that entity-related knowledge injected through fine-tuning is more susceptible than original entities from pre-training during unlearning, highlighting the necessity for more thorough pseudo-entity injection methods to make them closer to pre-trained knowledge.
Abstract:Advertising platforms have evolved in estimating Lifetime Value (LTV) to better align with advertisers' true performance metric. However, the sparsity of real-world LTV data presents a significant challenge to LTV predictive model(i.e., pLTV), severely limiting the their capabilities. Therefore, we propose to utilize external data, in addition to the internal data of advertising platform, to expand the size of purchase samples and enhance the LTV prediction model of the advertising platform. To tackle the issue of data distribution shift between internal and external platforms, we introduce an Adaptive Difference Siamese Network (ADSNet), which employs cross-domain transfer learning to prevent negative transfer. Specifically, ADSNet is designed to learn information that is beneficial to the target domain. We introduce a gain evaluation strategy to calculate information gain, aiding the model in learning helpful information for the target domain and providing the ability to reject noisy samples, thus avoiding negative transfer. Additionally, we also design a Domain Adaptation Module as a bridge to connect different domains, reduce the distribution distance between them, and enhance the consistency of representation space distribution. We conduct extensive offline experiments and online A/B tests on a real advertising platform. Our proposed ADSNet method outperforms other methods, improving GINI by 2$\%$. The ablation study highlights the importance of the gain evaluation strategy in negative gain sample rejection and improving model performance. Additionally, ADSNet significantly improves long-tail prediction. The online A/B tests confirm ADSNet's efficacy, increasing online LTV by 3.47$\%$ and GMV by 3.89$\%$.
Abstract:Federated Learning(FL) is a privacy-preserving machine learning paradigm where a global model is trained in-situ across a large number of distributed edge devices. These systems are often comprised of millions of user devices and only a subset of available devices can be used for training in each epoch. Designing a device selection strategy is challenging, given that devices are highly heterogeneous in both their system resources and training data. This heterogeneity makes device selection very crucial for timely model convergence and sufficient model accuracy. To tackle the FL client heterogeneity problem, various client selection algorithms have been developed, showing promising performance improvement in terms of model coverage and accuracy. In this work, we study the overhead of client selection algorithms in a large scale FL environment. Then we propose an efficient data distribution summary calculation algorithm to reduce the overhead in a real-world large scale FL environment. The evaluation shows that our proposed solution could achieve up to 30x reduction in data summary time, and up to 360x reduction in clustering time.
Abstract:Layer normalization (LN) is a ubiquitous technique in deep learning but our theoretical understanding to it remains elusive. This paper investigates a new theoretical direction for LN, regarding to its nonlinearity and representation capacity. We investigate the representation capacity of a network with layerwise composition of linear and LN transformations, referred to as LN-Net. We theoretically show that, given $m$ samples with any label assignment, an LN-Net with only 3 neurons in each layer and $O(m)$ LN layers can correctly classify them. We further show the lower bound of the VC dimension of an LN-Net. The nonlinearity of LN can be amplified by group partition, which is also theoretically demonstrated with mild assumption and empirically supported by our experiments. Based on our analyses, we consider to design neural architecture by exploiting and amplifying the nonlinearity of LN, and the effectiveness is supported by our experiments.