Chalmers University of Technology
Abstract:Embodied reference understanding is crucial for intelligent agents to predict referents based on human intention through gesture signals and language descriptions. This paper introduces the Attention-Dynamic DINO, a novel framework designed to mitigate misinterpretations of pointing gestures across various interaction contexts. Our approach integrates visual and textual features to simultaneously predict the target object's bounding box and the attention source in pointing gestures. Leveraging the distance-aware nature of nonverbal communication in visual perspective taking, we extend the virtual touch line mechanism and propose an attention-dynamic touch line to represent referring gesture based on interactive distances. The combination of this distance-aware approach and independent prediction of the attention source, enhances the alignment between objects and the gesture represented line. Extensive experiments on the YouRefIt dataset demonstrate the efficacy of our gesture information understanding method in significantly improving task performance. Our model achieves 76.4% accuracy at the 0.25 IoU threshold and, notably, surpasses human performance at the 0.75 IoU threshold, marking a first in this domain. Comparative experiments with distance-unaware understanding methods from previous research further validate the superiority of the Attention-Dynamic Touch Line across diverse contexts.
Abstract:Digital twinning is becoming increasingly vital in the design and real-time control of future wireless networks by providing precise cost-effective simulations, predictive insights, and real-time data integration. This paper explores the application of digital twinning in optimizing wireless communication systems within urban environments, where building arrangements can critically impact network performances. We develop a digital twin platform to simulate and analyze how factors such as building positioning, base station placement, and antenna design influence wireless propagation. The ray-tracing software package of Matlab is compared with Remcom Wireless InSite. Using a realistic radiation pattern of a base transceiver station (BTS) antenna, ray tracing simulations for signal propagation and interactions in urban landscapes are then extensively examined. By analyzing radio heat maps alongside antenna patterns, we gain valuable insights into optimizing wireless deployment strategies. This study highlights the potential of digital twinning as a critical tool for urban planners and network engineers.
Abstract:The integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection. However, this combination often struggles with capturing semantic information effectively. Moreover, relying solely on point features within regions of interest can lead to information loss and limitations in local feature representation. To tackle these challenges, we propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN). PVAFN leverages an attention mechanism to improve multi-modal feature fusion during the feature extraction phase. In the refinement stage, it utilizes a multi-pooling strategy to integrate both multi-scale and region-specific information effectively. The point-voxel attention mechanism adaptively combines point cloud and voxel-based Bird's-Eye-View (BEV) features, resulting in richer object representations that help to reduce false detections. Additionally, a multi-pooling enhancement module is introduced to boost the model's perception capabilities. This module employs cluster pooling and pyramid pooling techniques to efficiently capture key geometric details and fine-grained shape structures, thereby enhancing the integration of local and global features. Extensive experiments on the KITTI and Waymo datasets demonstrate that the proposed PVAFN achieves competitive performance. The code and models will be available.
Abstract:In speaker tracking research, integrating and complementing multi-modal data is a crucial strategy for improving the accuracy and robustness of tracking systems. However, tracking with incomplete modalities remains a challenging issue due to noisy observations caused by occlusion, acoustic noise, and sensor failures. Especially when there is missing data in multiple modalities, the performance of existing multi-modal fusion methods tends to decrease. To this end, we propose a Global-Local Distillation-based Tracker (GLDTracker) for robust audio-visual speaker tracking. GLDTracker is driven by a teacher-student distillation model, enabling the flexible fusion of incomplete information from each modality. The teacher network processes global signals captured by camera and microphone arrays, and the student network handles local information subject to visual occlusion and missing audio channels. By transferring knowledge from teacher to student, the student network can better adapt to complex dynamic scenes with incomplete observations. In the student network, a global feature reconstruction module based on the generative adversarial network is constructed to reconstruct global features from feature embedding with missing local information. Furthermore, a multi-modal multi-level fusion attention is introduced to integrate the incomplete feature and the reconstructed feature, leveraging the complementarity and consistency of audio-visual and global-local features. Experimental results on the AV16.3 dataset demonstrate that the proposed GLDTracker outperforms existing state-of-the-art audio-visual trackers and achieves leading performance on both standard and incomplete modalities datasets, highlighting its superiority and robustness in complex conditions. The code and models will be available.
Abstract:The upper mid-band (FR3) has been recently attracting interest for new generation of mobile networks, as it provides a promising balance between spectrum availability and coverage, which are inherent limitations of the sub 6GHz and millimeter wave bands, respectively. In order to efficiently design and optimize the network, channel modeling plays a key role since FR3 systems are expected to operate at multiple frequency bands. Data-driven methods, especially generative adversarial networks (GANs), can capture the intricate relationships among data samples, and provide an appropriate tool for FR3 channel modeling. In this work, we present the architecture, link state model, and path generative network of GAN-based FR3 channel modeling. The comparison of our model greatly matches the ray-tracing simulated data.
Abstract:Future generations of mobile networks call for concurrent sensing and communication functionalities in the same hardware and/or spectrum. Compared to communication, sensing services often suffer from limited coverage, due to the high path loss of the reflected signal and the increased infrastructure requirements. To provide a more uniform quality of service, distributed multiple input multiple output (D-MIMO) systems deploy a large number of distributed nodes and efficiently control them, making distributed integrated sensing and communications (ISAC) possible. In this paper, we investigate ISAC in D-MIMO through the lens of different design architectures and deployments, revealing both conflicts and synergies. In addition, simulation and demonstration results reveal both opportunities and challenges towards the implementation of ISAC in D-MIMO.
Abstract:The study of cooperation within social dilemmas has long been a fundamental topic across various disciplines, including computer science and social science. Recent advancements in Artificial Intelligence (AI) have significantly reshaped this field, offering fresh insights into understanding and enhancing cooperation. This survey examines three key areas at the intersection of AI and cooperation in social dilemmas. First, focusing on multi-agent cooperation, we review the intrinsic and external motivations that support cooperation among rational agents, and the methods employed to develop effective strategies against diverse opponents. Second, looking into human-agent cooperation, we discuss the current AI algorithms for cooperating with humans and the human biases towards AI agents. Third, we review the emergent field of leveraging AI agents to enhance cooperation among humans. We conclude by discussing future research avenues, such as using large language models, establishing unified theoretical frameworks, revisiting existing theories of human cooperation, and exploring multiple real-world applications.
Abstract:Millimeter wave (mmWave) multiple-input-multi-output (MIMO) is now a reality with great potential for further improvement. We study full-duplex transmissions as an effective way to improve mmWave MIMO systems. Compared to half-duplex systems, full-duplex transmissions may offer higher data rates and lower latency. However, full-duplex transmission is hindered by self-interference (SI) at the receive antennas, and SI channel estimation becomes a crucial step to make the full-duplex systems feasible. In this paper, we address the problem of channel estimation in full-duplex mmWave MIMO systems using neural networks (NNs). Our approach involves sharing pilot resources between user equipments (UEs) and transmit antennas at the base station (BS), aiming to reduce the pilot overhead in full-duplex systems and to achieve a comparable level to that of a half-duplex system. Additionally, in the case of separate antenna configurations in a full-duplex BS, providing channel estimates of transmit antenna (TX) arrays to the downlink UEs poses another challenge, as the TX arrays are not capable of receiving pilot signals. To address this, we employ an NN to map the channel from the downlink UEs to the receive antenna (RX) arrays to the channel from the TX arrays to the downlink UEs. We further elaborate on how NNs perform the estimation with different architectures, (e.g., different numbers of hidden layers), the introduction of non-linear distortion (e.g., with a 1-bit analog-to-digital converter (ADC)), and different channel conditions (e.g., low-correlated and high-correlated channels). Our work provides novel insights into NN-based channel estimators.
Abstract:Holographic Multiple-Input Multiple-Output (HMIMO), which densely integrates numerous antennas into a limited space, is anticipated to provide higher rates for future 6G wireless communications. The increase in antenna aperture size makes the near-field region enlarge, causing some users to be located in the near-field region. Thus, we are facing a hybrid near-field and far-field communication problem, where conventional far-field modeling methods may not work well. In this paper, we propose a near-far field channel model that does not presuppose whether each path is near-field or far-field, different from the existing work requiring the ratio of the number of near-field paths to that of far-field paths as prior knowledge. However, this gives rise to a new challenge for accurately modeling the channel, as conventional methods of obtaining channel model parameters are not applicable to this model. Therefore, we propose a new method, Expectation-Maximization (EM)-based Near-Far Field Channel Modeling, to obtain channel model parameters, which considers whether each path is near-field or far-field as a hidden variable, and optimizes the hidden variables and channel model parameters through an alternating iteration method. Simulation results show that our method is superior to conventional near-field and far-field algorithms in fitting the near-far field channel in terms of outage probability.
Abstract:Federated Learning (FL) is a privacy-preserving machine learning (ML) technology that enables collaborative training and learning of a global ML model based on aggregating distributed local model updates. However, security and privacy guarantees could be compromised due to malicious participants and the centralized FL server. This article proposed a bi-level blockchained architecture for secure federated learning-based traffic prediction. The bottom and top layer blockchain store the local model and global aggregated parameters accordingly, and the distributed homomorphic-encrypted federated averaging (DHFA) scheme addresses the secure computation problems. We propose the partial private key distribution protocol and a partially homomorphic encryption/decryption scheme to achieve the distributed privacy-preserving federated averaging model. We conduct extensive experiments to measure the running time of DHFA operations, quantify the read and write performance of the blockchain network, and elucidate the impacts of varying regional group sizes and model complexities on the resulting prediction accuracy for the online traffic flow prediction task. The results indicate that the proposed system can facilitate secure and decentralized federated learning for real-world traffic prediction tasks.