Abstract:Localization and tracking are critical components of integrated sensing and communication (ISAC) systems, enhancing resource management, beamforming accuracy, and overall system reliability through precise sensing. Due to the high path loss of the high-frequency systems, antenna arrays are required at the transmitter and receiver sides for beamforming gain. However, beam misalignment may occur, which requires accurate tracking of the six-dimensional (6D) state, namely, 3D position and 3D orientation. In this work, we first address the challenge that the rotation matrix, being part of the Lie group rather than Euclidean space, necessitates the derivation of the ICRB for an intrinsic performance benchmark. Then, leveraging the derived ICRB, we develop two filters-one utilizing pose fusion and the other employing error-state Kalman filter to estimate the UE's 6D state for different computational resource consumption and accuracy requirements. Simulation results validate the ICRB and assess the performance of the proposed filters, demonstrating their effectiveness and improved accuracy in 6D state tracking.
Abstract:We investigate a multi-low Earth orbit (LEO) satellite system that simultaneously provides positioning and communication services to terrestrial user terminals. To address the challenges of channel estimation in LEO satellite systems, we propose a novel two-timescale positioning-aided channel estimation framework, exploiting the distinct variation rates of position-related parameters and channel gains inherent in LEO satellite channels. Using the misspecified Cramer-Rao bound (MCRB) theory, we systematically analyze positioning performance under practical imperfections, such as inter-satellite clock bias and carrier frequency offset. Furthermore, we theoretically demonstrate how position information derived from downlink positioning can enhance uplink channel estimation accuracy, even in the presence of positioning errors, through an MCRB-based analysis. To overcome the constraints of limited link budgets and communication rates associated with single-satellite-based communication, we develop a distributed beamforming strategy for downlink communication. This strategy allows LEO satellites to independently optimize their beamformers using local channel state information, eliminating the need for centralized processing while preserving the advantages of multi-satellite cooperative communication. Theoretical analyses and numerical results confirm the effectiveness of the proposed framework in achieving high-precision downlink positioning under practical imperfections, facilitating uplink channel estimation, and enabling efficient downlink communication.
Abstract:Beamforming plays a crucial role in millimeter wave (mmWave) communication systems to mitigate the severe attenuation inherent to this spectrum. However, the use of large active antenna arrays in conventional architectures often results in high implementation costs and excessive power consumption, limiting their practicality. As an alternative, deploying large arrays at transceivers using passive devices, such as reconfigurable intelligent surfaces (RISs), offers a more cost-effective and energy-efficient solution. In this paper, we investigate a promising base station (BS) architecture that integrates a beyond diagonal RIS (BD-RIS) within the BS to enable passive beamforming. By utilizing Takagi's decomposition and leveraging the effective beamforming vector, the RIS profile can be designed to enable passive beamforming directed toward the target. Through the beamforming analysis, we reveal that BD-RIS provides robust beamforming performance across various system configurations, whereas the traditional diagonal RIS (D-RIS) exhibits instability with increasing RIS size and decreasing BS-RIS separation-two critical factors in optimizing RIS-assisted systems. Comprehensive computer simulation results across various aspects validate the superiority of the proposed BS-integrated BD-RIS over conventional D-RIS architectures, showcasing performance comparable to active analog beamforming antenna arrays.
Abstract:We investigate the performance tradeoff between \textit{bistatic positioning (BP)} and \textit{monostatic sensing (MS)} in a multi-input multi-output orthogonal frequency division multiplexing scenario. We derive the Cram\'er-Rao bounds (CRBs) for BP at the user equipment and MS at the base station. To balance these objectives, we propose a multi-objective optimization framework that optimizes beamformers using a weighted-sum CRB approach, ensuring the weak Pareto boundary. We also introduce two mismatch-minimizing approaches, targeting beamformer mismatch and variance matrix mismatch, and solve them distinctly. Numerical results demonstrate the performance tradeoff between BP and MS, revealing significant gains with the proposed methods and highlighting the advantages of minimizing the weighted-sum mismatch of variance matrices.
Abstract:This study reveals the vulnerabilities of Wireless Local Area Networks (WLAN) sensing, under the scope of joint communication and sensing (JCAS), focusing on target spoofing and deceptive jamming techniques. We use orthogonal frequency-division multiplexing (OFDM) to explore how adversaries can exploit WLAN's sensing capabilities to inject false targets and disrupt normal operations. Unlike traditional methods that require sophisticated digital radio-frequency memory hardware, we demonstrate that much simpler software-defined radios can effectively serve as deceptive jammers in WLAN settings. Through comprehensive modeling and practical experiments, we show how deceptive jammers can manipulate the range-Doppler map (RDM) by altering signal integrity, thereby posing significant security threats to OFDM-based JCAS systems. Our findings comprehensively evaluate jammer impact on RDMs and propose several jamming strategies that vary in complexity and detectability.
Abstract:We investigate an uplink MIMO-OFDM localization scenario where a legitimate base station (BS) aims to localize a user equipment (UE) using pilot signals transmitted by the UE, while an unauthorized BS attempts to localize the UE by eavesdropping on these pilots, posing a risk to the UE's location privacy. To enhance legitimate localization performance while protecting the UE's privacy, we formulate an optimization problem regarding the beamformers at the UE, aiming to minimize the Cram\'er-Rao bound (CRB) for legitimate localization while constraining the CRB for unauthorized localization above a threshold. A penalty dual decomposition optimization framework is employed to solve the problem, leading to a novel beamforming approach for location privacy preservation. Numerical results confirm the effectiveness of the proposed approach and demonstrate its superiority over existing benchmarks.
Abstract:This paper introduces a novel approach to efficient localization in next-generation communication systems through a base station (BS)-enabled passive beamforming utilizing beyond diagonal reconfigurable intelligent surfaces (BD-RISs). Unlike conventional diagonal RISs (D-RISs), which suffer from limited beamforming capability, a BD-RIS provides enhanced control over both phase and amplitude, significantly improving localization accuracy. By conducting a comprehensive Cram\'er-Rao lower bound (CRLB) analysis across various system parameters in both near-field and far-field scenarios, we establish the BD-RIS structure as a competitive alternative to traditional active antenna arrays. Our results reveal that BD-RISs achieve near active antenna arrays performance in localization precision, overcoming the limitations of D-RISs and underscoring its potential for high-accuracy positioning in future communication networks. This work envisions the use of BD-RIS for enabling passive beamforming-based localization, setting the stage for more efficient and scalable localization strategies in sixth-generation networks and beyond.
Abstract:The concept of 6G distributed integrated sensing and communications (DISAC) builds upon the functionality of integrated sensing and communications (ISAC) by integrating distributed architectures, significantly enhancing both sensing and communication coverage and performance. In 6G DISAC systems, tracking target trajectories requires base stations (BSs) to hand over their tracked targets to neighboring BSs. Determining what information to share, where, how, and when is critical to effective handover. This paper addresses the target handover challenge in DISAC systems and introduces a method enabling BSs to share essential target trajectory information at appropriate time steps, facilitating seamless handovers to other BSs. The target tracking problem is tackled using the standard trajectory Poisson multi-Bernoulli mixture (TPMBM) filter, enhanced with the proposed handover algorithm. Simulation results confirm the effectiveness of the implemented tracking solution.
Abstract:Distributed massive multiple-input multiple-output networks utilize a large number of distributed access points (APs) to serve multiple user equipments (UEs), offering significant potential for both communication and localization. However, these networks require frequent phase and time calibration between distributed antennas due to oscillator phase drifts, crucial for reciprocity-based coherent beamforming and accurate localization. While this calibration is typically performed through bi-directional measurements between antennas, it can be simplified to unidirectional measurement under perfect knowledge of antenna locations. This paper extends a recent phase calibration narrowband line-of-sight (LoS) model to a phase and time calibration wideband orthogonal frequency division multiplexing model, including both LoS and reflection paths and allowing for joint phase and time calibrations. We explore different scenarios, considering whether or not prior knowledge of antenna locations and the map is available. For each case, we introduce a practical maximum likelihood estimator and conduct Cramer-Rao lower bound (CRLB) analyses to benchmark performance. Simulations validate our estimators against the CRLB in these scenarios.
Abstract:Cell-free massive multiple-input multiple-output (mMIMO) networks enhance coverage and spectral efficiency (SE) by distributing antennas across access points (APs) with phase coherence between APs. However, the use of cost-efficient local oscillators (LOs) introduces phase noise (PN) that compromises phase coherence, even with centralized processing. Sharing an LO across APs can reduce costs in specific configurations but cause correlated PN between APs, leading to correlated interference that affects centralized combining. This can be improved by exploiting the PN correlation in channel estimation. This paper presents an uplink orthogonal frequency division multiplexing (OFDM) signal model for PN-impaired cell-free mMIMO, addressing gaps in single-carrier signal models. We evaluate mismatches from applying single-carrier methods to OFDM systems, showing how they underestimate the impact of PN and produce over-optimistic achievable SE predictions. Based on our OFDM signal model, we propose two PN-aware channel and common phase error estimators: a distributed estimator for uncorrelated PN with separate LOs and a centralized estimator with shared LOs. We introduce a deep learning-based channel estimator to enhance the performance and reduce the number of iterations of the centralized estimator. The simulation results show that the distributed estimator outperforms mismatched estimators with separate LOs, whereas the centralized estimator enhances distributed estimators with shared LOs.