Abstract:This letter investigates the joint sensing problem between unmanned aerial vehicles (UAV) and base stations (BS) in integrated sensing and communication (ISAC) systems with fluid antennas (FA). In this system, the BS enhances its sensing performance through the UAV's perception system. We aim to maximize the communication rate between the BS and UAV while guaranteeing the joint system's sensing capability. By establishing a communication-sensing model with convex optimization properties, we decompose the problem and apply convex optimization to progressively solve key variables. An iterative algorithm employing an alternating optimization approach is subsequently developed to determine the optimal solution, significantly reducing the solution complexity. Simulation results validate the algorithm's effectiveness in balancing system performance.
Abstract:We propose the Soft Graph Transformer (SGT), a Soft-Input-Soft-Output neural architecture tailored for MIMO detection. While Maximum Likelihood (ML) detection achieves optimal accuracy, its prohibitive exponential complexity renders it impractical for real-world systems. Conventional message passing algorithms offer tractable alternatives but rely on large-system asymptotics and random matrix assumptions, both of which break down under practical implementations. Prior Transformer-based detectors, on the other hand, fail to incorporate the MIMO factor graph structure and cannot utilize decoder-side soft information, limiting their standalone performance and their applicability in iterative detection-decoding (IDD). To overcome these limitations, SGT integrates message passing directly into a graph-aware attention mechanism and supports decoder-informed updates through soft-input embeddings. This design enables effective soft-output generation while preserving computational efficiency. As a standalone detector, SGT closely approaches ML performance and surpasses prior Transformer-based approaches.
Abstract:In this paper, we explore the integration of communication and synthetic aperture radar (SAR)-based remote sensing in low Earth orbit (LEO) satellite systems to provide real-time SAR imaging and information transmission. Considering the high-mobility characteristics of satellite channels and limited processing capabilities of satellite payloads, we propose an integrated communication and remote sensing architecture based on an orthogonal delay-Doppler division multiplexing (ODDM) signal waveform. Both communication and SAR imaging functionalities are achieved with an integrated transceiver onboard the LEO satellite, utilizing the same waveform and radio frequency (RF) front-end. Based on such an architecture, we propose a transmission protocol compatible with the 5G NR standard using downlink pilots for joint channel estimation and SAR imaging. Furthermore, we design a unified signal processing framework for the integrated satellite receiver to simultaneously achieve high-performance channel sensing, low-complexity channel equalization and interference-free SAR imaging. Finally, the performance of the proposed integrated system is demonstrated through comprehensive analysis and extensive simulations in the sub-6 GHz band. Moreover, a software-defined radio (SDR) prototype is presented to validate its effectiveness for real-time SAR imaging and information transmission in satellite direct-connect user equipment (UE) scenarios within the millimeter-wave (mmWave) band.
Abstract:Traditional cartoon and anime production involves keyframing, inbetweening, and colorization stages, which require intensive manual effort. Despite recent advances in AI, existing methods often handle these stages separately, leading to error accumulation and artifacts. For instance, inbetweening approaches struggle with large motions, while colorization methods require dense per-frame sketches. To address this, we introduce ToonComposer, a generative model that unifies inbetweening and colorization into a single post-keyframing stage. ToonComposer employs a sparse sketch injection mechanism to provide precise control using keyframe sketches. Additionally, it uses a cartoon adaptation method with the spatial low-rank adapter to tailor a modern video foundation model to the cartoon domain while keeping its temporal prior intact. Requiring as few as a single sketch and a colored reference frame, ToonComposer excels with sparse inputs, while also supporting multiple sketches at any temporal location for more precise motion control. This dual capability reduces manual workload and improves flexibility, empowering artists in real-world scenarios. To evaluate our model, we further created PKBench, a benchmark featuring human-drawn sketches that simulate real-world use cases. Our evaluation demonstrates that ToonComposer outperforms existing methods in visual quality, motion consistency, and production efficiency, offering a superior and more flexible solution for AI-assisted cartoon production.
Abstract:Inter-user interference remains a critical bottleneck in wireless communication systems, particularly in the emerging paradigm of semantic communication (SemCom). Compared to traditional systems, inter-user interference in SemCom severely degrades key semantic information, often causing worse performance than Gaussian noise under the same power level. To address this challenge, inspired by the recently proposed concept of Orthogonal Model Division Multiple Access (OMDMA) that leverages semantic orthogonality rooted in the personalized joint source and channel (JSCC) models to distinguish users, we propose a novel, scalable framework that eliminates the need for user-specific JSCC models as did in original OMDMA. Our key innovation lies in shuffle-based orthogonalization, where randomly permuting the positions of JSCC feature vectors transforms inter-user interference into Gaussian-like noise. By assigning each user a unique shuffling pattern, the interference is treated as channel noise, enabling effective mitigation using diffusion models (DMs). This approach not only simplifies system design by requiring a single universal JSCC model but also enhances privacy, as shuffling patterns act as implicit private keys. Additionally, we extend the framework to scenarios involving semantically correlated data. By grouping users based on semantic similarity, a cooperative beamforming strategy is introduced to exploit redundancy in correlated data, further improving system performance. Extensive simulations demonstrate that the proposed method outperforms state-of-the-art multi-user SemCom frameworks, achieving superior semantic fidelity, robustness to interference, and scalability-all without requiring additional training overhead.
Abstract:Semantic communication emphasizes the transmission of meaning rather than raw symbols. It offers a promising solution to alleviate network congestion and improve transmission efficiency. In this paper, we propose a wireless image communication framework that employs probability graphs as shared semantic knowledge base among distributed users. High-level image semantics are represented via scene graphs, and a two-stage compression algorithm is devised to remove predictable components based on learned conditional and co-occurrence probabilities. At the transmitter, the algorithm filters redundant relations and entity pairs, while at the receiver, semantic recovery leverages the same probability graphs to reconstruct omitted information. For further research, we also put forward a multi-round semantic compression algorithm with its theoretical performance analysis. Simulation results demonstrate that our semantic-aware scheme achieves superior transmission throughput and satiable semantic alignment, validating the efficacy of leveraging high-level semantics for image communication.
Abstract:Multimodal fingerprinting is a crucial technique to sub-meter 6G integrated sensing and communications (ISAC) localization, but two hurdles block deployment: (i) the contribution each modality makes to the target position varies with the operating conditions such as carrier frequency, and (ii) spatial and fingerprint ambiguities markedly undermine localization accuracy, especially in non-line-of-sight (NLOS) scenarios. To solve these problems, we introduce SCADF-MoE, a spatial-context aware dynamic fusion network built on a soft mixture-of-experts backbone. SCADF-MoE first clusters neighboring points into short trajectories to inject explicit spatial context. Then, it adaptively fuses channel state information, angle of arrival profile, distance, and gain through its learnable MoE router, so that the most reliable cues dominate at each carrier band. The fused representation is fed to a modality-task MoE that simultaneously regresses the coordinates of every vertex in the trajectory and its centroid, thereby exploiting inter-point correlations. Finally, an auxiliary maximum-mean-discrepancy loss enforces expert diversity and mitigates gradient interference, stabilizing multi-task training. On three real urban layouts and three carrier bands (2.6, 6, 28 GHz), the model delivers consistent sub-meter MSE and halves unseen-NLOS error versus the best prior work. To our knowledge, this is the first work that leverages large-scale multimodal MoE for frequency-robust ISAC localization.
Abstract:Image customization, a crucial technique for industrial media production, aims to generate content that is consistent with reference images. However, current approaches conventionally separate image customization into position-aware and position-free customization paradigms and lack a universal framework for diverse customization, limiting their applications across various scenarios. To overcome these limitations, we propose IC-Custom, a unified framework that seamlessly integrates position-aware and position-free image customization through in-context learning. IC-Custom concatenates reference images with target images to a polyptych, leveraging DiT's multi-modal attention mechanism for fine-grained token-level interactions. We introduce the In-context Multi-Modal Attention (ICMA) mechanism with learnable task-oriented register tokens and boundary-aware positional embeddings to enable the model to correctly handle different task types and distinguish various inputs in polyptych configurations. To bridge the data gap, we carefully curated a high-quality dataset of 12k identity-consistent samples with 8k from real-world sources and 4k from high-quality synthetic data, avoiding the overly glossy and over-saturated synthetic appearance. IC-Custom supports various industrial applications, including try-on, accessory placement, furniture arrangement, and creative IP customization. Extensive evaluations on our proposed ProductBench and the publicly available DreamBench demonstrate that IC-Custom significantly outperforms community workflows, closed-source models, and state-of-the-art open-source approaches. IC-Custom achieves approximately 73% higher human preference across identity consistency, harmonicity, and text alignment metrics, while training only 0.4% of the original model parameters. Project page: https://liyaowei-stu.github.io/project/IC_Custom
Abstract:The advent of 6G networks demands unprecedented levels of intelligence, adaptability, and efficiency to address challenges such as ultra-high-speed data transmission, ultra-low latency, and massive connectivity in dynamic environments. Traditional wireless image transmission frameworks, reliant on static configurations and isolated source-channel coding, struggle to balance computational efficiency, robustness, and quality under fluctuating channel conditions. To bridge this gap, this paper proposes an AI-native deep joint source-channel coding (JSCC) framework tailored for resource-constrained 6G networks. Our approach integrates key information extraction and adaptive background synthesis to enable intelligent, semantic-aware transmission. Leveraging AI-driven tools, Mediapipe for human pose detection and Rembg for background removal, the model dynamically isolates foreground features and matches backgrounds from a pre-trained library, reducing data payloads while preserving visual fidelity. Experimental results demonstrate significant improvements in peak signal-to-noise ratio (PSNR) compared with traditional JSCC method, especially under low-SNR conditions. This approach offers a practical solution for multimedia services in resource-constrained mobile communications.
Abstract:In this paper, we incorporate physical knowledge into learning-based high-precision target sensing using the multi-view channel state information (CSI) between multiple base stations (BSs) and user equipment (UEs). Such kind of multi-view sensing problem can be naturally cast into a conditional generation framework. To this end, we design a bipartite neural network architecture, the first part of which uses an elaborately designed encoder to fuse the latent target features embedded in the multi-view CSI, and then the second uses them as conditioning inputs of a powerful generative model to guide the target's reconstruction. Specifically, the encoder is designed to capture the physical correlation between the CSI and the target, and also be adaptive to the numbers and positions of BS-UE pairs. Therein the view-specific nature of CSI is assimilated by introducing a spatial positional embedding scheme, which exploits the structure of electromagnetic(EM)-wave propagation channels. Finally, a conditional diffusion model with a weighted loss is employed to generate the target's point cloud from the fused features. Extensive numerical results demonstrate that the proposed generative multi-view (Gen-MV) sensing framework exhibits excellent flexibility and significant performance improvement on the reconstruction quality of target's shape and EM properties.