Abstract:In this letter, we propose to deploy rotatable antennas (RAs) at the base station (BS) to enhance both communication and sensing (C&S) performances, by exploiting a new spatial degree-of-freedom (DoF) offered by array rotation. Specifically, we formulate a multi-objective optimization problem to simultaneously maximize the sum-rate of multiple communication users and minimize the Cram\'er-Rao bound (CRB) for target angle estimation, by jointly optimizing the transmit beamforming vectors and the array rotation angle at the BS. To solve this problem, we first equivalently decompose it into two subproblems, corresponding to an inner problem for beamforming optimization and an outer problem for array rotation optimization. Although these two subproblems are non-convex, we obtain their high-quality solutions by applying the block coordinate descent (BCD) technique and one-dimensional exhaustive search, respectively. Moreover, we show that for the communication-only case, RAs provide an additional rotation gain to improve communication performance; while for the sensing-only case, the equivalent spatial aperture can be enlarged by RAs for achieving higher sensing accuracy. Finally, numerical results are presented to showcase the performance gains of RAs over fixed-rotation antennas in integrated sensing and communications (ISAC).
Abstract:In this paper, we study efficient mixed near-field and far-field target localization methods for low-altitude economy, by capitalizing on extremely large-scale multiple-input multiple-output (XL-MIMO) communication systems. Compared with existing works, we address three new challenges in localization, arising from 1) half-wavelength antenna spacing constraint, 2) hybrid uniform planar array (UPA) architecture, and 3) incorrect mixed-field target classification for near-field targets.To address these issues, we propose a new three-step mixed-field localization method.First, we reconstruct the signals received at UPA antennas by judiciously designing analog combining matrices over time with minimum recovery errors, thus tackling the reduced-dimensional signal-space issue in hybrid arrays.Second, based on recovered signals, we devise a modified MUSIC algorithm (catered to UPA architecture) to estimate 2D angular parameters of both far- and near-field targets. Due to half-wavelength inter-antenna spacing, there exist ambiguous angles when estimating true angles of targets.In the third step, we design an effective classification method to distinguish mixed-field targets, determine true angles of all targets, as well as estimate the ranges of near-field targets. In particular, angular ambiguity is resolved by showing an important fact that the three types of estimated angles (i.e., far-field, near-field, and ambiguous angles) exhibit significantly different patterns in the range-domain MUSIC spectrum. Furthermore, to characterize the estimation error lower-bound, we obtain a matrix closed-form Cram\'er-Rao bounds for mixed-field target localization. Finally, numerical results demonstrate the effectiveness of our proposed mixed-field localization method, which improves target-classification accuracy and achieves a lower root mean square error than various benchmark schemes.
Abstract:Rare events, despite their infrequency, often carry critical information and require immediate attentions in mission-critical applications such as autonomous driving, healthcare, and industrial automation. The data-intensive nature of these tasks and their need for prompt responses, combined with designing edge AI (or edge inference), pose significant challenges in systems and techniques. Existing edge inference approaches often suffer from communication bottlenecks due to high-dimensional data transmission and fail to provide timely responses to rare events, limiting their effectiveness for mission-critical applications in the sixth-generation (6G) mobile networks. To overcome these challenges, we propose a channel-adaptive, event-triggered edge-inference framework that prioritizes efficient rare-event processing. Central to this framework is a dual-threshold, multi-exit architecture, which enables early local inference for rare events detected locally while offloading more complex rare events to edge servers for detailed classification. To further enhance the system's performance, we developed a channel-adaptive offloading policy paired with an online algorithm to dynamically determine the optimal confidence thresholds for controlling offloading decisions. The associated optimization problem is solved by reformulating the original non-convex function into an equivalent strongly convex one. Using deep neural network classifiers and real medical datasets, our experiments demonstrate that the proposed framework not only achieves superior rare-event classification accuracy, but also effectively reduces communication overhead, as opposed to existing edge-inference approaches.
Abstract:Federated Dropout is an efficient technique to overcome both communication and computation bottlenecks for deploying federated learning at the network edge. In each training round, an edge device only needs to update and transmit a sub-model, which is generated by the typical method of dropout in deep learning, and thus effectively reduces the per-round latency. \textcolor{blue}{However, the theoretical convergence analysis for Federated Dropout is still lacking in the literature, particularly regarding the quantitative influence of dropout rate on convergence}. To address this issue, by using the Taylor expansion method, we mathematically show that the gradient variance increases with a scaling factor of $\gamma/(1-\gamma)$, with $\gamma \in [0, \theta)$ denoting the dropout rate and $\theta$ being the maximum dropout rate ensuring the loss function reduction. Based on the above approximation, we provide the convergence analysis for Federated Dropout. Specifically, it is shown that a larger dropout rate of each device leads to a slower convergence rate. This provides a theoretical foundation for reducing the convergence latency by making a tradeoff between the per-round latency and the overall rounds till convergence. Moreover, a low-complexity algorithm is proposed to jointly optimize the dropout rate and the bandwidth allocation for minimizing the loss function in all rounds under a given per-round latency and limited network resources. Finally, numerical results are provided to verify the effectiveness of the proposed algorithm.
Abstract:In this letter, we propose a new conformal array architecture, called extremely large-scale uniform arc array (XL-UAA), to improve near-field communication performance. Specifically,under the non-uniform spherical wavefront channel model, we establish mathematical modeling and performance analysis for XL-UAAs. It is shown that XL-UAAs have larger direction-dependent Rayleigh distance and uniform power distance than the conventional XL uniform linear arrays (XL-ULAs). Moreover, a closed-form expression for the signal-to-noise ratio (SNR) is obtained, which depends on collective properties of XL-UAAs, such as the distance between the user and the array center,as well as the arc radius. In addition, we show that the asymptotic SNR of XL-UAAs with the number of antennas depends on the projection distance of the user to the middle of the arc array. Finally, numerical results verify that XL-UAAs achieve a higher SNR than XL-ULAs, especially at larger user incident angles.
Abstract:Mixed-precision quantization offers superior performance to fixed-precision quantization. It has been widely used in signal processing, communication systems, and machine learning. In mixed-precision quantization, bit allocation is essential. Hence, in this paper, we propose a new bit allocation framework for mixed-precision quantization from a search perspective. First, we formulate a general bit allocation problem for mixed-precision quantization. Then we introduce the penalized particle swarm optimization (PPSO) algorithm to address the integer consumption constraint. To improve efficiency and avoid iterations on infeasible solutions within the PPSO algorithm, a greedy criterion particle swarm optimization (GC-PSO) algorithm is proposed. The corresponding convergence analysis is derived based on dynamical system theory. Furthermore, we apply the above framework to some specific classic fields, i.e., finite impulse response (FIR) filters, receivers, and gradient descent. Numerical examples in each application underscore the superiority of the proposed framework to the existing algorithms.
Abstract:In this paper, we investigate a resource allocation and model retraining problem for dynamic wireless networks by utilizing incremental learning, in which the digital twin (DT) scheme is employed for decision making. A two-timescale framework is proposed for computation resource allocation, mobile user association, and incremental training of user models. To obtain an optimal resource allocation and incremental learning policy, we propose an efficient two-timescale scheme based on hybrid DT-physical architecture with the objective to minimize long-term system delay. Specifically, in the large-timescale, base stations will update the user association and implement incremental learning decisions based on statistical state information from the DT system. Then, in the short timescale, an effective computation resource allocation and incremental learning data generated from the DT system is designed based on deep reinforcement learning (DRL), thus reducing the network system's delay in data transmission, data computation, and model retraining steps. Simulation results demonstrate the effectiveness of the proposed two-timescale scheme compared with benchmark schemes.
Abstract:Large-aperture coprime arrays (CAs) are expected to achieve higher sensing resolution than conventional dense arrays (DAs), yet with lower hardware and energy cost. However, existing CA far-field localization methods cannot be directly applied to near-field scenarios due to channel model mismatch. To address this issue, in this paper, we propose an efficient near-field localization method for CAs. Specifically, we first construct an effective covariance matrix, which allows to decouple the target angle-and-range estimation. Then, a customized two-phase multiple signal classification (MUSIC) algorithm for CAs is proposed, which first detects all possible targets' angles by using an angular-domain MUSIC algorithm, followed by the second phase to resolve the true targets' angles and ranges by devising a range-domain MUSIC algorithm. Finally, we show that the proposed method is able to locate more targets than the subarray-based method as well as achieve lower root mean square error (RMSE) than DAs.
Abstract:In this article, we propose new network architectures that integrate multi-functional reconfigurable intelligent surfaces (MF-RISs) into 6G networks to enhance both communication and sensing capabilities. Firstly, we elaborate how to leverage MF-RISs for improving communication performance in different communication modes including unicast, mulitcast, and broadcast and for different multi-access schemes. Next, we emphasize synergistic benefits of integrating MF-RISs with wireless sensing, enabling more accurate and efficient target detection in 6G networks. Furthermore, we present two schemes that utilize MF-RISs to enhance the performance of integrated sensing and communication (ISAC). We also study multi-objective optimization to achieve the optimal trade-off between communication and sensing performance. Finally, we present numerical results to show the performance improvements offered by MF-RISs compared to conventional RISs in ISAC. We also outline key research directions for MF-RIS under the ambition of 6G.
Abstract:In this paper, we study efficient channel estimation design for an extremely large-scale intelligent reflecting surface (XL-IRS) assisted multi-user communication systems, where both the base station (BS) and users are located in the near-field region of the XL-IRS. Two unique channel characteristics of XL-IRS are considered, namely, the near-field spherical wavefronts and double-sided visibility regions (VRs) at the BS and users, which render the channel estimation for XL-IRS highly challenging. To address this issue, we propose in this paper an efficient three-step XL-IRS channel estimation method. Specifically, in the first step, an anchor node is delicately deployed near the XL-IRS to estimate the cascaded BS-IRS-anchor channel. Then, an efficient VR detection method is devised to estimate the VR information between the BS and XL-IRS. In this way, only the channels from the visible XL-IRS elements to the BS are estimated, thereby reducing the dimension of the cascaded BS-IRS-users channels to be estimated. Third, by leveraging the common BS-IRS channel, the cascaded channels for all users are consecutively estimated accounting for the VRs of the IRS-user channels. Finally, numerical results are provided to demonstrate the effectiveness of our proposed channel estimation scheme as compared to various benchmark schemes.