Abstract:Channel knowledge map (CKM) is a novel approach for achieving environment-aware communication and sensing. This paper presents an integrated sensing and communication (ISAC)-based CKM prototype system, demonstrating the mutualistic relationship between ISAC and CKM. The system consists of an ISAC base station (BS), a user equipment (UE), and a server. By using a shared orthogonal frequency division multiplexing (OFDM) waveform over the millimeter wave (mmWave) band, the ISAC BS is able to communicate with the UE while simultaneously sensing the environment and acquiring the UE's location. The prototype showcases the complete process of the construction and application of the ISAC-based CKM. For CKM construction phase, the BS stores the UE's channel feedback information in a database indexed by the UE's location, including beam indices and channel gain. For CKM application phase, the BS looks up the best beam index from the CKM based on the UE's location to achieve training-free mmWave beam alignment. The experimental results show that ISAC can be used to construct or update CKM while communicating with UEs, and the pre-learned CKM can assist ISAC for training-free beam alignment.
Abstract:Integrated super-resolution sensing and communication (ISSAC) has emerged as a promising technology to achieve extremely high precision sensing for those key parameters, such as the angles of the sensing targets. In this paper, we propose an efficient channel estimation scheme enabled by ISSAC for millimeter wave (mmWave) and TeraHertz (THz) systems with a hybrid analog/digital beamforming architecture, where both the pilot overhead and the cost of radio frequency (RF) chains are significantly reduced. The key idea is to exploit the fact that subspace-based super-resolution algorithms such as multiple signal classification (MUSIC) can estimate channel parameters accurately without requiring dedicate a priori known pilots. In particular, the proposed method consists of two stages. First, the angles of the multi-path channel components are estimated in a pilot-free manner during the transmission of data symbols. Second, the multi-path channel coefficients are estimated with very few pilots. Compared to conventional channel estimation schemes that rely solely on channel training, our approach requires the estimation of much fewer parameters in the second stage. Furthermore, with channel multi-path angles obtained, the beamforming gain can be achieved when pilots are sent to estimate the channel path gains. To comprehensively investigate the performance of the proposed scheme, we consider both the basic line-of-sight (LoS) channels and more general multi-path channels. We compare the performance of the minimum mean square error (MMSE) of channel estimation and the resulting beamforming gains of our proposed scheme with the traditional scheme that rely exclusively on channel training. It is demonstrated that our proposed method significantly outperforms the benchmarking scheme. Simulation results are presented to validate our theoretical findings.
Abstract:Cell-free wireless communication is envisioned as one of the most promising network architectures, which can achieve stable and uniform communication performance while improving the system energy and spectrum efficiency. The deployment of cell-free networks is envisioned to be a longterm evolutionary process, in which cell-free access points (APs) will be gradually introduced into the communication network and collaborate with the existing cellular base stations (BSs). To further explore the performance limits of hybrid cellular and cell-free networks, this paper develops a hybrid network model based on stochastic geometric toolkits, which reveals the coupling of the signal and interference from both the cellular and cell-free networks. Specifically, the conjugate beamforming is applied in hybrid cellular and cell-free networks, which enables user equipment (UE) to benefit from both cellular BSs and cell-free APs. The aggregate signal received from the hybrid network is approximated via moment matching, and coverage probability is characterized by deriving the Laplace transform of the interference. The analysis of signal strength and coverage probability is verified by extensive simulations.
Abstract:Predictive millimeter-wave (mmWave) beamforming is a promising technique to enable low-latency and high-rate ground-air communications for cellular-connected unmanned aerial vehicles (UAVs). However, the high vulnerability of mmWave to blockages poses practical challenges to the implementation of such a technology. In this paper, we tackle the challenges by proposing a channel knowledge map (CKM)-assisted predictive beamforming approach based on the echoed joint communication and sensing signal, whereby the line-of-sight (LoS) link identification is performed via hypothesis testing using prior information provided by CKM. Depending on the identification result, extended Kalman filtering (EKF) is adopted to reliably track the target UAV. Furthermore, if the non-line-of-sight (NLoS) state is identified, the target UAV will be immediately connected to a candidate base station (BS), namely a handover will be triggered to alleviate the communication outage. The simulation results show that the proposed method can significantly enhance the UAV tracking and mmWave communication performance compared to the benchmarking schemes without using CKM or LoS identification.
Abstract:Integrated super-resolution sensing and communication (ISSAC) is a promising technology to achieve extremely high sensing performance for critical parameters, such as the angles of the wireless channels. In this paper, we propose an ISSAC-based channel estimation method, which requires little or even no pilot, yet still achieves accurate channel state information (CSI) estimation. The key idea is to exploit the fact that subspace-based super-resolution algorithms such as multiple signal classification (MUSIC) do not require a priori known pilots for accurate parameter estimation. Therefore, in the proposed method, the angles of the multi-path channel components are first estimated in a pilot-free manner while communication data symbols are sent. After that, the multi-path channel coefficients are estimated, where very little pilots are needed. The reasons are two folds. First, compared to the conventional channel estimation methods purely relying on channel training, much fewer parameters need to be estimated once the multi-path angles are accurately estimated. Besides, with angles obtained, the beamforming gain is also enjoyed when pilots are sent to estimate the channel path gains. To rigorously study the performance of the proposed method, we first consider the basic line-of-sight (LoS) channel. By analyzing the minimum mean square error (MMSE) of channel estimation and the resulting beamforming gains, we show that our proposed method significantly outperforms the conventional methods purely based on channel training. We then extend the study to the more general multipath channels. Simulation results are provided to demonstrate our theoretical results.
Abstract:Channel knowledge map (CKM) has been recently proposed to enable environment-aware communications by utilizing historical or simulation generated wireless channel data. This paper studies the construction of one particular type of CKM, namely channel gain map (CGM), by using a finite number of measurements or simulation-generated data, with model-based spatial channel prediction. We try to answer the following question: How much data is sufficient for CKM construction? To this end, we first derive the average mean square error (AMSE) of the channel gain prediction as a function of the sample density of data collection for offline CGM construction, as well as the number of data points used for online spatial channel gain prediction. To model the spatial variation of the wireless environment even within each cell, we divide the CGM into subregions and estimate the channel parameters from the local data within each subregion. The parameter estimation error and the channel prediction error based on estimated channel parameters are derived as functions of the number of data points within the subregion. The analytical results provide useful guide for CGM construction and utilization by determining the required spatial sample density for offline data collection and number of data points to be used for online channel prediction, so that the desired level of channel prediction accuracy is guaranteed.
Abstract:Sixth-generation (6G) mobile communication networks are expected to have dense infrastructures, large-dimensional channels, cost-effective hardware, diversified positioning methods, and enhanced intelligence. Such trends bring both new challenges and opportunities for the practical design of 6G. On one hand, acquiring channel state information (CSI) in real time for all wireless links becomes quite challenging in 6G. On the other hand, there would be numerous data sources in 6G containing high-quality location-tagged channel data, making it possible to better learn the local wireless environment. By exploiting such new opportunities and for tackling the CSI acquisition challenge, there is a promising paradigm shift from the conventional environment-unaware communications to the new environment-aware communications based on the novel approach of channel knowledge map (CKM). This article aims to provide a comprehensive tutorial overview on environment-aware communications enabled by CKM to fully harness its benefits for 6G. First, the basic concept of CKM is presented, and a comparison of CKM with various existing channel inference techniques is discussed. Next, the main techniques for CKM construction are discussed, including both the model-free and model-assisted approaches. Furthermore, a general framework is presented for the utilization of CKM to achieve environment-aware communications, followed by some typical CKM-aided communication scenarios. Finally, important open problems in CKM research are highlighted and potential solutions are discussed to inspire future work.
Abstract:Delay alignment modulation (DAM) is a novel wideband transmission technique for mmWave massive MIMO systems, which exploits the high spatial resolution and multi-path sparsity to mitigate ISI, without relying on channel equalization or multi-carrier transmission. In particular, DAM leverages the delay pre-compensation and path-based beamforming to effectively align the multi-path components, thus achieving the constructive multi-path combination for eliminating the ISI while preserving the multi-path power gain. Different from the existing works only considering single-user DAM, this paper investigates the DAM technique for multi-user mmWave massive MIMO communication. First, we consider the asymptotic regime when the number of antennas Mt at BS is sufficiently large. It is shown that by employing the simple delay pre-compensation and per-path-based MRT beamforming, the single-carrier DAM is able to perfectly eliminate both ISI and IUI. Next, we consider the general scenario with Mt being finite. In this scenario, we characterize the achievable rate region of the multi-user DAM system by finding its Pareto boundary. Specifically, we formulate a rate-profile-constrained sum rate maximization problem by optimizing the per-path-based beamforming. Furthermore, we present three low-complexity per-path-based beamforming strategies based on the MRT, zero-forcing, and regularized zero-forcing principles, respectively, based on which the achievable sum rates are studied. Finally, we provide simulation results to demonstrate the performance of our proposed strategies as compared to two benchmark schemes based on the strongest-path-based beamforming and the prevalent OFDM, respectively. It is shown that DAM achieves higher spectral efficiency and/or lower peak-to-average-ratio, for systems with high spatial resolution and multi-path diversity.
Abstract:Cellular-connected unmanned aerial vehicle (UAV) is a promising technology to unlock the full potential of UAVs in the future. However, how to achieve ubiquitous three-dimensional (3D) communication coverage for the UAVs in the sky is a new challenge. In this paper, we tackle this challenge by a new coverage-aware navigation approach, which exploits the UAV's controllable mobility to design its navigation/trajectory to avoid the cellular BSs' coverage holes while accomplishing their missions. We formulate an UAV trajectory optimization problem to minimize the weighted sum of its mission completion time and expected communication outage duration, and propose a new solution approach based on the technique of deep reinforcement learning (DRL). To further improve the performance, we propose a new framework called simultaneous navigation and radio mapping (SNARM), where the UAV's signal measurement is used not only for training the deep Q network (DQN) directly, but also to create a radio map that is able to predict the outage probabilities at all locations in the area of interest. This thus enables the generation of simulated UAV trajectories and predicting their expected returns, which are then used to further train the DQN via Dyna technique, thus greatly improving the learning efficiency.
Abstract:Video action recognition, which is topical in computer vision and video analysis, aims to allocate a short video clip to a pre-defined category such as brushing hair or climbing stairs. Recent works focus on action recognition with deep neural networks that achieve state-of-the-art results in need of high-performance platforms. Despite the fast development of mobile computing, video action recognition on mobile devices has not been fully discussed. In this paper, we focus on the novel mobile video action recognition task, where only the computational capabilities of mobile devices are accessible. Instead of raw videos with huge storage, we choose to extract multiple modalities (including I-frames, motion vectors, and residuals) directly from compressed videos. By employing MobileNetV2 as backbone, we propose a novel Temporal Trilinear Pooling (TTP) module to fuse the multiple modalities for mobile video action recognition. In addition to motion vectors, we also provide a temporal fusion method to explicitly induce the temporal context. The efficiency test on a mobile device indicates that our model can perform mobile video action recognition at about 40FPS. The comparative results on two benchmarks show that our model outperforms existing action recognition methods in model size and time consuming, but with competitive accuracy.