Sherman
Abstract:Existing diffusion-based methods for inverse problems sample from the posterior using score functions and accept the generated random samples as solutions. In applications that posterior mean is preferred, we have to generate multiple samples from the posterior which is time-consuming. In this work, by analyzing the probability density evolution of the conditional reverse diffusion process, we prove that the posterior mean can be achieved by tracking the mean of each reverse diffusion step. Based on that, we establish a framework termed reverse mean propagation (RMP) that targets the posterior mean directly. We show that RMP can be implemented by solving a variational inference problem, which can be further decomposed as minimizing a reverse KL divergence at each reverse step. We further develop an algorithm that optimizes the reverse KL divergence with natural gradient descent using score functions and propagates the mean at each reverse step. Experiments demonstrate the validity of the theory of our framework and show that our algorithm outperforms state-of-the-art algorithms on reconstruction performance with lower computational complexity in various inverse problems.
Abstract:With antenna spacing much less than half a wavelength in confined space, holographic multiple-input multiple-output (HMIMO) technology presents a promising frontier in next-generation mobile communication. We delve into the research of the multi-user uplink transmission with both the base station and the users equipped with holographic planar arrays. To begin, we construct an HMIMO channel model utilizing electromagnetic field equations, accompanied by a colored noise model that accounts for both electromagnetic interference and hardware noise. Since this model is continuous, we approximate it within a finite-dimensional space spanned by Fourier space series, which can be defined as the communication mode functions. We show that this channel model samples Green's function in the wavenumber domain in different communication modes. Subsequently, we tackle the challenging task of maximizing the spectral efficiency (SE) of the system, which involves optimizing the continuous current density function (CDF) for each user. Using the aforementioned approximation model, we transform the optimization variables into expansion coefficients of the CDFs on a finite-dimensional space, for which we propose an iterative water-filling algorithm. Simulation results illustrate the efficacy of the proposed algorithm in enhancing the system SE and show the influence of the colored noise and the system parameters on the SE.
Abstract:The next sixth generation (6G) networks are envisioned to integrate sensing and communications in a single system, thus greatly improving spectrum utilization and reducing hardware costs. Low earth orbit (LEO) satellite communications combined with massive multiple-input multiple-output (MIMO) technology holds significant promise in offering ubiquitous and seamless connectivity with high data rates. Existing integrated sensing and communications (ISAC) studies mainly focus on terrestrial systems, while operating ISAC in massive MIMO LEO satellite systems is promising to provide high-capacity communication and flexible sensing ubiquitously. In this paper, we first give an overview of LEO satellite systems and ISAC and consider adopting ISAC in the massive MIMO LEO satellite systems. Then, the recent research advances are presented. A discussion on related challenges and key enabling technologies follows. Finally, we point out some open issues and promising research directions.
Abstract:Channel knowledge map (CKM) has received widespread attention as an emerging enabling technology for environment-aware wireless communications. It involves the construction of databases containing location-specific channel knowledge, which are then leveraged to facilitate channel state information (CSI) acquisition and transceiver design. In this context, a fundamental challenge lies in efficiently constructing the CKM based on a given wireless propagation environment. Most existing methods are based on stochastic modeling and sequence prediction, which do not fully exploit the inherent physical characteristics of the propagation environment, resulting in low accuracy and high computational complexity. To address these limitations, we propose a Laplacian pyramid (LP)-based CKM construction scheme to predict the channel knowledge at arbitrary locations in a targeted area. Specifically, we first view the channel knowledge as a 2-D image and transform the CKM construction problem into an image-to-image (I2I) inpainting task, which predicts the channel knowledge at a specific location by recovering the corresponding pixel value in the image matrix. Then, inspired by the reversible and closed-form structure of the LP, we show its natural suitability for our task in designing a fast I2I mapping network. For different frequency components of LP decomposition, we design tailored networks accordingly. Besides, to encode the global structural information of the propagation environment, we introduce self-attention and cross-covariance attention mechanisms in different layers, respectively. Finally, experimental results show that the proposed scheme outperforms the benchmark, achieving higher reconstruction accuracy while with lower computational complexity. Moreover, the proposed approach has a strong generalization ability and can be implemented in different wireless communication scenarios.
Abstract:In this paper, we investigate the precoder design for user-centric network (UCN) massive multiple-input multiple-output (mMIMO) downlink with matrix manifold optimization. In UCN mMIMO systems, each user terminal (UT) is served by a subset of base stations (BSs) instead of all the BSs, facilitating the implementation of the system and lowering the dimension of the precoders to be designed. By proving that the precoder set satisfying the per-BS power constraints forms a Riemannian submanifold of a linear product manifold, we transform the constrained precoder design problem in Euclidean space to an unconstrained one on the Riemannian submanifold. Riemannian ingredients, including orthogonal projection, Riemannian gradient, retraction and vector transport, of the problem on the Riemannian submanifold are further derived, with which the Riemannian conjugate gradient (RCG) design method is proposed for solving the unconstrained problem. The proposed method avoids the inverses of large dimensional matrices, which is beneficial in practice. The complexity analyses show the high computational efficiency of RCG precoder design. Simulation results demonstrate the numerical superiority of the proposed precoder design and the high efficiency of the UCN mMIMO system.
Abstract:Integrated communications and localization (ICAL) will play an important part in future sixth generation (6G) networks for the realization of Internet of Everything (IoE) to support both global communications and seamless localization. Massive multiple-input multiple-output (MIMO) low earth orbit (LEO) satellite systems have great potential in providing wide coverage with enhanced gains, and thus are strong candidates for realizing ubiquitous ICAL. In this paper, we develop a wideband massive MIMO LEO satellite system to simultaneously support wireless communications and localization operations in the downlink. In particular, we first characterize the signal propagation properties and derive a localization performance bound. Based on these analyses, we focus on the hybrid analog/digital precoding design to achieve high communication capability and localization precision. Numerical results demonstrate that the proposed ICAL scheme supports both the wireless communication and localization operations for typical system setups.
Abstract:In wireless communications, electromagnetic theory and information theory constitute a pair of fundamental theories, bridged by antenna theory and wireless propagation channel modeling theory. Up to the fifth generation (5G) wireless communication networks, these four theories have been developing relatively independently. However, in sixth generation (6G) space-air-ground-sea wireless communication networks, seamless coverage is expected in the three-dimensional (3D) space, potentially necessitating the acquisition of channel state information (CSI) and channel capacity calculation at anywhere and any time. Additionally, the key 6G technologies such as ultra-massive multiple-input multiple-output (MIMO) and holographic MIMO achieves intricate interaction of the antennas and wireless propagation environments, which necessitates the joint modeling of antennas and wireless propagation channels. To address the challenges in 6G, the integration of the above four theories becomes inevitable, leading to the concept of the so-called electromagnetic information theory (EIT). In this article, a suite of 6G key technologies is highlighted. Then, the concepts and relationships of the four theories are unveiled. Finally, the necessity and benefits of integrating them into the EIT are revealed.
Abstract:In conventional multiple-input multiple-output (MIMO) communication systems, the positions of antennas are fixed. To take full advantage of spatial degrees of freedom, a new technology called fluid antenna (FA) is proposed to obtain higher achievable rate and diversity gain. Most existing works on FA exploit instantaneous channel state information (CSI). However, in FA-assisted systems, it is difficult to obtain instantaneous CSI since changes in the antenna position will lead to channel variation. In this letter, we investigate a FA-assisted MIMO system using relatively slow-varying statistical CSI. Specifically, in the criterion of rate maximization, we propose an algorithmic framework for transmit precoding and transmit/receive FAs position designs with statistical CSI. Simulation results show that our proposed algorithm in FA-assisted systems significantly outperforms baselines in terms of rate performance.
Abstract:Sixth-generation (6G) mobile communication networks are expected to have dense infrastructures, large-dimensional channels, cost-effective hardware, diversified positioning methods, and enhanced intelligence. Such trends bring both new challenges and opportunities for the practical design of 6G. On one hand, acquiring channel state information (CSI) in real time for all wireless links becomes quite challenging in 6G. On the other hand, there would be numerous data sources in 6G containing high-quality location-tagged channel data, making it possible to better learn the local wireless environment. By exploiting such new opportunities and for tackling the CSI acquisition challenge, there is a promising paradigm shift from the conventional environment-unaware communications to the new environment-aware communications based on the novel approach of channel knowledge map (CKM). This article aims to provide a comprehensive tutorial overview on environment-aware communications enabled by CKM to fully harness its benefits for 6G. First, the basic concept of CKM is presented, and a comparison of CKM with various existing channel inference techniques is discussed. Next, the main techniques for CKM construction are discussed, including both the model-free and model-assisted approaches. Furthermore, a general framework is presented for the utilization of CKM to achieve environment-aware communications, followed by some typical CKM-aided communication scenarios. Finally, important open problems in CKM research are highlighted and potential solutions are discussed to inspire future work.
Abstract:We investigate the weighted sum-rate (WSR) maximization linear precoder design for massive MIMO downlink and propose a unified matrix manifold optimization framework applicable to total power constraint (TPC), per-user power constraint (PUPC) and per-antenna power constraint (PAPC). Particularly, we prove that the precoders under TPC, PUPC and PAPC are on different Riemannian submanifolds, and transform the constrained problems in Euclidean space to unconstrained ones on manifolds. In accordance with this, we derive Riemannian ingredients including orthogonal projection, Riemannian gradient, Riemannian Hessian, retraction and vector transport, which are needed for precoder design in matrix manifold framework. Then, Riemannian design methods using Riemannian steepest descent, Riemannian conjugate gradient and Riemannian trust region are provided to design the WSR-maximization precoders under TPC, PUPC or PAPC. Riemannian methods are free of the inverse of large dimensional matrix, which is of great significance for practice. Complexity analysis and performance simulations demonstrate the advantages of the proposed precoder design.