Abstract:Multi-band massive multiple-input multiple-output (MIMO) communication can promote the cooperation of licensed and unlicensed spectra, effectively enhancing spectrum efficiency for Wi-Fi and other wireless systems. As an enabler for multi-band transmission, channel fingerprints (CF), also known as the channel knowledge map or radio environment map, are used to assist channel state information (CSI) acquisition and reduce computational complexity. In this paper, we propose CF-CGN (Channel Fingerprints with Cycle-consistent Generative Networks) to extrapolate CF for multi-band massive MIMO transmission where licensed and unlicensed spectra cooperate to provide ubiquitous connectivity. Specifically, we first model CF as a multichannel image and transform the extrapolation problem into an image translation task, which converts CF from one frequency to another by exploring the shared characteristics of statistical CSI in the beam domain. Then, paired generative networks are designed and coupled by variable-weight cycle consistency losses to fit the reciprocal relationship at different bands. Matched with the coupled networks, a joint training strategy is developed accordingly, supporting synchronous optimization of all trainable parameters. During the inference process, we also introduce a refining scheme to improve the extrapolation accuracy based on the resolution of CF. Numerical results illustrate that our proposed CF-CGN can achieve bidirectional extrapolation with an error of 5-17 dB lower than the benchmarks in different communication scenarios, demonstrating its excellent generalization ability. We further show that the sum rate performance assisted by CF-CGN-based CF is close to that with perfect CSI for multi-band massive MIMO transmission.
Abstract:Extremely large-scale multiple-input multiple-output (XL-MIMO) is critical to future wireless networks. The substantial increase in the number of base station (BS) antennas introduces near-field propagation effects in the wireless channels, complicating channel parameter estimation and increasing pilot overhead. Channel charting (CC) has emerged as a potent unsupervised technique to effectively harness varying high-dimensional channel statistics to enable non-orthogonal pilot assignment and reduce pilot overhead. In this paper, we investigate near-field channel estimation with reduced pilot overhead by developing a CC-assisted pilot scheduling. To this end, we introduce a polar-domain codebook to capture the power distribution of near-field XL-MIMO channels. The CC-assisted approach uses such features as inputs to enable an effective low-dimensional mapping of the inherent correlation patterns in near-field user terminal (UT) channels. Building upon the mapped channel correlations, we further propose a near-field CC-assisted pilot allocation (NCC-PA) algorithm, which efficiently enhances channel orthogonality among pilot-reusing UTs. Numerical results confirm that the NCC-PA algorithm substantially elevates the wireless transmission performance, offering a marked improvement over the conventional far-field CC-PA approach.
Abstract:Massive multiple-input multiple-output (MIMO) offers significant advantages in spectral and energy efficiencies, positioning it as a cornerstone technology of fifth-generation (5G) wireless communication systems and a promising solution for the burgeoning data demands anticipated in sixth-generation (6G) networks. In recent years, with the continuous advancement of artificial intelligence (AI), a multitude of task-oriented generative foundation models (GFMs) have emerged, achieving remarkable performance in various fields such as computer vision (CV), natural language processing (NLP), and autonomous driving. As a pioneering force, these models are driving the paradigm shift in AI towards generative AI (GenAI). Among them, the generative diffusion model (GDM), as one of state-of-the-art families of generative models, demonstrates an exceptional capability to learn implicit prior knowledge and robust generalization capabilities, thereby enhancing its versatility and effectiveness across diverse applications. In this paper, we delve into the potential applications of GDM in massive MIMO communications. Specifically, we first provide an overview of massive MIMO communication, the framework of GFMs, and the working mechanism of GDM. Following this, we discuss recent research advancements in the field and present a case study of near-field channel estimation based on GDM, demonstrating its promising potential for facilitating efficient ultra-dimensional channel statement information (CSI) acquisition in the context of massive MIMO communications. Finally, we highlight several pressing challenges in future mobile communications and identify promising research directions surrounding GDM.
Abstract:Channel knowledge map (CKM) has received widespread attention as an emerging enabling technology for environment-aware wireless communications. It involves the construction of databases containing location-specific channel knowledge, which are then leveraged to facilitate channel state information (CSI) acquisition and transceiver design. In this context, a fundamental challenge lies in efficiently constructing the CKM based on a given wireless propagation environment. Most existing methods are based on stochastic modeling and sequence prediction, which do not fully exploit the inherent physical characteristics of the propagation environment, resulting in low accuracy and high computational complexity. To address these limitations, we propose a Laplacian pyramid (LP)-based CKM construction scheme to predict the channel knowledge at arbitrary locations in a targeted area. Specifically, we first view the channel knowledge as a 2-D image and transform the CKM construction problem into an image-to-image (I2I) inpainting task, which predicts the channel knowledge at a specific location by recovering the corresponding pixel value in the image matrix. Then, inspired by the reversible and closed-form structure of the LP, we show its natural suitability for our task in designing a fast I2I mapping network. For different frequency components of LP decomposition, we design tailored networks accordingly. Besides, to encode the global structural information of the propagation environment, we introduce self-attention and cross-covariance attention mechanisms in different layers, respectively. Finally, experimental results show that the proposed scheme outperforms the benchmark, achieving higher reconstruction accuracy while with lower computational complexity. Moreover, the proposed approach has a strong generalization ability and can be implemented in different wireless communication scenarios.