Abstract:In this paper, we investigate receiver design for high frequency (HF) skywave massive multiple-input multiple-output (MIMO) communications. We first establish a modified beam based channel model (BBCM) by performing uniform sampling for directional cosine with deterministic sampling interval, where the beam matrix is constructed using a phase-shifted discrete Fourier transform (DFT) matrix. Based on the modified BBCM, we propose a beam structured turbo receiver (BSTR) involving low-dimensional beam domain signal detection for grouped user terminals (UTs), which is proved to be asymptotically optimal in terms of minimizing mean-squared error (MSE). Moreover, we extend it to windowed BSTR by introducing a windowing approach for interference suppression and complexity reduction, and propose a well-designed energy-focusing window. We also present an efficient implementation of the windowed BSTR by exploiting the structure properties of the beam matrix and the beam domain channel sparsity. Simulation results validate the superior performance of the proposed receivers but with remarkably low complexity.
Abstract:In this paper, we rethink delay Doppler channels (also called doubly selective channels). We prove that no modulation schemes can compensate a non-trivial Doppler spread well. This means that the current active OTFS (that is the same as VOFDM) cannot compensate a non-trivial Doppler spread. We then discuss some of the existing methods to deal with time-varying channels, in particular time-frequency (TF) coding in an OFDM system. TF coding is equivalent to space-time coding in the math part. We also summarize state of the art on space-time coding that was an active research topic over 10 years ago.
Abstract:Multi-band massive multiple-input multiple-output (MIMO) communication can promote the cooperation of licensed and unlicensed spectra, effectively enhancing spectrum efficiency for Wi-Fi and other wireless systems. As an enabler for multi-band transmission, channel fingerprints (CF), also known as the channel knowledge map or radio environment map, are used to assist channel state information (CSI) acquisition and reduce computational complexity. In this paper, we propose CF-CGN (Channel Fingerprints with Cycle-consistent Generative Networks) to extrapolate CF for multi-band massive MIMO transmission where licensed and unlicensed spectra cooperate to provide ubiquitous connectivity. Specifically, we first model CF as a multichannel image and transform the extrapolation problem into an image translation task, which converts CF from one frequency to another by exploring the shared characteristics of statistical CSI in the beam domain. Then, paired generative networks are designed and coupled by variable-weight cycle consistency losses to fit the reciprocal relationship at different bands. Matched with the coupled networks, a joint training strategy is developed accordingly, supporting synchronous optimization of all trainable parameters. During the inference process, we also introduce a refining scheme to improve the extrapolation accuracy based on the resolution of CF. Numerical results illustrate that our proposed CF-CGN can achieve bidirectional extrapolation with an error of 5-17 dB lower than the benchmarks in different communication scenarios, demonstrating its excellent generalization ability. We further show that the sum rate performance assisted by CF-CGN-based CF is close to that with perfect CSI for multi-band massive MIMO transmission.
Abstract:Massive multiple-input multiple-output (MIMO) offers significant advantages in spectral and energy efficiencies, positioning it as a cornerstone technology of fifth-generation (5G) wireless communication systems and a promising solution for the burgeoning data demands anticipated in sixth-generation (6G) networks. In recent years, with the continuous advancement of artificial intelligence (AI), a multitude of task-oriented generative foundation models (GFMs) have emerged, achieving remarkable performance in various fields such as computer vision (CV), natural language processing (NLP), and autonomous driving. As a pioneering force, these models are driving the paradigm shift in AI towards generative AI (GenAI). Among them, the generative diffusion model (GDM), as one of state-of-the-art families of generative models, demonstrates an exceptional capability to learn implicit prior knowledge and robust generalization capabilities, thereby enhancing its versatility and effectiveness across diverse applications. In this paper, we delve into the potential applications of GDM in massive MIMO communications. Specifically, we first provide an overview of massive MIMO communication, the framework of GFMs, and the working mechanism of GDM. Following this, we discuss recent research advancements in the field and present a case study of near-field channel estimation based on GDM, demonstrating its promising potential for facilitating efficient ultra-dimensional channel statement information (CSI) acquisition in the context of massive MIMO communications. Finally, we highlight several pressing challenges in future mobile communications and identify promising research directions surrounding GDM.
Abstract:This paper investigates movable antenna (MA) aided non-orthogonal multiple access (NOMA) for multi-user downlink communication, where the base station (BS) is equipped with a fixed-position antenna (FPA) array to serve multiple MA-enabled users. An optimization problem is formulated to maximize the minimum achievable rate among all the users by jointly optimizing the MA positioning of each user, the precoding matrix at the BS, and the successive interference cancellation (SIC) decoding indicator matrix at the users, subject to a set of constraints including the limited movement area of the MAs, the maximum transmit power of the BS, and the SIC decoding condition. To solve this non-convex problem, we propose a two-loop iterative optimization algorithm that combines the hippopotamus optimization (HO) method with the alternating optimization (AO) method to obtain a suboptimal solution efficiently. Specifically, in the inner loop, the complex-valued precoding matrix and the binary decoding indicator matrix are optimized alternatively by the successive convex approximation (SCA) technique with customized greedy search to maximize the minimum achievable rate for the given positions of the MAs. In the outer loop, each user's antenna position is updated using the HO algorithm, following a novel nature-inspired intelligent optimization framework. Simulation results show that the proposed algorithms can effectively avoid local optimum for highly coupled variables and significantly improve the rate performance of the NOMA system compared to the conventional FPA system as well as other benchmark schemes.
Abstract:The effective utilization of unlicensed spectrum is regarded as an important direction to enable the massive access and broad coverage for next-generation wireless local area network (WLAN). Due to the crowded spectrum occupancy and dense user terminals (UTs), the conventional fixed antenna (FA)-based access points (APs) face huge challenges in realizing massive access and interference cancellation. To address this issue, in this paper we develop a six-dimensional movable antenna (6DMA) enhanced multi-AP coordination system for coverage enhancement and interference mitigation. First, we model the wireless channels between the APs and UTs to characterize their variation with respect to 6DMA movement, in terms of both the three-dimensional (3D) position and 3D orientation of each distributed AP's antenna. Then, an optimization problem is formulated to maximize the weighted sum rate of multiple UTs for their uplink transmissions by jointly optimizing the antenna position vector (APV), the antenna orientation matrix (AOM), and the receive combining matrix over all coordinated APs, subject to the constraints on local antenna movement regions. To solve this challenging non-convex optimization problem, we first transform it into a more tractable Lagrangian dual problem. Then, an alternating optimization (AO)-based algorithm is developed by iteratively optimizing the APV and AOM, which are designed by applying the successive convex approximation (SCA) technique and Riemannian manifold optimization-based algorithm, respectively. Simulation results show that the proposed 6DMA-enhanced multi-AP coordination system can significantly enhance network capacity, and both of the online and offline 6DMA schemes can attain considerable performance improvement compared to the conventional FA-based schemes.
Abstract:Movable antenna (MA) is an emerging technology that can significantly improve communication performance via the continuous adjustment of the antenna positions. To unleash the potential of MAs in wideband communication systems, acquiring accurate channel state information (CSI), i.e., the channel frequency responses (CFRs) between any position pair within the transmit (Tx) region and the receive (Rx) region across all subcarriers, is a crucial issue. In this paper, we study the channel estimation problem for wideband MA systems. To start with, we express the CFRs as a combination of the field-response vectors (FRVs), delay-response vector (DRV), and path-response tensor (PRT), which exhibit sparse characteristics and can be recovered by using a limited number of channel measurements at selected position pairs of Tx and Rx MAs over a few subcarriers. Specifically, we first formulate the recovery of the FRVs and DRV as a problem with multiple measurement vectors in compressed sensing (MMV-CS), which can be solved via a simultaneous orthogonal matching pursuit (SOMP) algorithm. Next, we estimate the PRT using the least-square (LS) method. Moreover, we also devise an alternating refinement approach to further improve the accuracy of the estimated FRVs, DRV, and PRT. This is achieved by minimizing the discrepancy between the received pilots and those constructed by the estimated CSI, which can be efficiently carried out by using the gradient descent algorithm. Finally, simulation results demonstrate that both the SOMP-based channel estimation method and alternating refinement method can reconstruct the complete wideband CSI with high accuracy, where the alternating refinement method performs better despite a higher complexity.
Abstract:Hyperspectral object tracking (HOT) has exhibited potential in various applications, particularly in scenes where objects are camouflaged. Existing trackers can effectively retrieve objects via band regrouping because of the bias in existing HOT datasets, where most objects tend to have distinguishing visual appearances rather than spectral characteristics. This bias allows the tracker to directly use the visual features obtained from the false-color images generated by hyperspectral images without the need to extract spectral features. To tackle this bias, we find that the tracker should focus on the spectral information when object appearance is unreliable. Thus, we provide a new task called hyperspectral camouflaged object tracking (HCOT) and meticulously construct a large-scale HCOT dataset, termed BihoT, which consists of 41,912 hyperspectral images covering 49 video sequences. The dataset covers various artificial camouflage scenes where objects have similar appearances, diverse spectrums, and frequent occlusion, making it a very challenging dataset for HCOT. Besides, a simple but effective baseline model, named spectral prompt-based distractor-aware network (SPDAN), is proposed, comprising a spectral embedding network (SEN), a spectral prompt-based backbone network (SPBN), and a distractor-aware module (DAM). Specifically, the SEN extracts spectral-spatial features via 3-D and 2-D convolutions. Then, the SPBN fine-tunes powerful RGB trackers with spectral prompts and alleviates the insufficiency of training samples. Moreover, the DAM utilizes a novel statistic to capture the distractor caused by occlusion from objects and background. Extensive experiments demonstrate that our proposed SPDAN achieves state-of-the-art performance on the proposed BihoT and other HOT datasets.
Abstract:The plane wave based wireless communications have becoming more and more matured, along with the well utilization of the traditional resources such as time and frequency. To further increase the capacity for rapidly increasing capacity demand of wireless communications, it is potential to use the twist wave, which has the orbital angular momentum (OAM). In this paper, we discuss the OAM based wireless communications in the aspect of orthogonality, degree of freedom (DoF), and capacity, where both the transmitter and the receiver use uniform circular array (UCA) antennas. In particular, we compare OAM based wireless communications with multiple-input-multiple-output (MIMO) based wireless communications in terms of DoF and capacity. Numerical results are presented to validate and evaluate that the DoF of OAM based wireless communications is greater than or equal to that of correlated MIMO based wireless communications when the transmitter and the receiver antennas are aligned well. The OAM based wireless communications can achieve larger capacity than the correlated MIMO in high signal-to-noise ratio (SNR) region under line-of-sight scenario.
Abstract:Due to high bandwidth and small antenna size, millimeter-wave (mmWave) integrated line-of-sight (LOS) multiple-input-multiple-output (MIMO) systems have attracted much attention. Reconfigurable intelligent surfaces (RISs), which have the potential to change the characteristics of incident electromagnetic waves with low power cost, can improve the performance or the MIMO mmWave wireless communications. Uniform circular array (UCA) is an effective antenna structure with low complexity transceiver. In this paper, UCA based RIS-assisted MIMO mmWave wireless communications with transmit UCA, the RIS UCAs, and receive UCA are investigated. Since the rotation angles between the transceiver make the channel matrix noncirculant, an algorithm is developed to derive the ranges of the rotation angles based on an acceptable error and reduce the impact of rotation angles on channel matrix. Then, we propose a low-complexity precoding scheme at the transmitter, phase designs at the RIS UCAs, and a phase compensation scheme at the receiver, which can convert the channel matrix into an equivalent circulant channel matrix with a small error. Then, a fast symbol-wise maximum likelihood (ML) detection scheme is proposed to recover the signals with low computational complexity. Simulation results are presented to illustrate the theory.