Tim
Abstract:The space-air-ground integrated network (SAGIN) has become a crucial research direction in future wireless communications due to its ubiquitous coverage, rapid and flexible deployment, and multi-layer cooperation capabilities. However, integrating hierarchical federated learning (HFL) with edge computing and SAGINs remains a complex open issue to be resolved. This paper proposes a novel framework for applying HFL in SAGINs, utilizing aerial platforms and low Earth orbit (LEO) satellites as edge servers and cloud servers, respectively, to provide multi-layer aggregation capabilities for HFL. The proposed system also considers the presence of inter-satellite links (ISLs), enabling satellites to exchange federated learning models with each other. Furthermore, we consider multiple different computational tasks that need to be completed within a limited satellite service time. To maximize the convergence performance of all tasks while ensuring fairness, we propose the use of the distributional soft-actor-critic (DSAC) algorithm to optimize resource allocation in the SAGIN and aggregation weights in HFL. Moreover, we address the efficiency issue of hybrid action spaces in deep reinforcement learning (DRL) through a decoupling and recoupling approach, and design a new dynamic adjusting reward function to ensure fairness among multiple tasks in federated learning. Simulation results demonstrate the superiority of our proposed algorithm, consistently outperforming baseline approaches and offering a promising solution for addressing highly complex optimization problems in SAGINs.
Abstract:Zero-shot learning (ZSL) aims to recognize unseen classes by exploiting semantic descriptions shared between seen classes and unseen classes. Current methods show that it is effective to learn visual-semantic alignment by projecting semantic embeddings into the visual space as class prototypes. However, such a projection function is only concerned with seen classes. When applied to unseen classes, the prototypes often perform suboptimally due to domain shift. In this paper, we propose to learn prototypes via placeholders, termed LPL, to eliminate the domain shift between seen and unseen classes. Specifically, we combine seen classes to hallucinate new classes which play as placeholders of the unseen classes in the visual and semantic space. Placed between seen classes, the placeholders encourage prototypes of seen classes to be highly dispersed. And more space is spared for the insertion of well-separated unseen ones. Empirically, well-separated prototypes help counteract visual-semantic misalignment caused by domain shift. Furthermore, we exploit a novel semantic-oriented fine-tuning to guarantee the semantic reliability of placeholders. Extensive experiments on five benchmark datasets demonstrate the significant performance gain of LPL over the state-of-the-art methods. Code is available at https://github.com/zaiquanyang/LPL.
Abstract:The recent advancements in machine learning (ML) have demonstrated the potential for providing a powerful solution to build complex prediction systems in a short time. However, in highly regulated industries, such as the financial technology (Fintech), people have raised concerns about the risk of ML systems discriminating against specific protected groups or individuals. To address these concerns, researchers have introduced various mathematical fairness metrics and bias mitigation algorithms. This paper discusses hidden technical debts and challenges of building fair ML systems in a production environment for Fintech. We explore various stages that require attention for fairness in the ML system development and deployment life cycle. To identify hidden technical debts that exist in building fair ML system for Fintech, we focus on key pipeline stages including data preparation, model development, system monitoring and integration in production. Our analysis shows that enforcing fairness for production-ready ML systems in Fintech requires specific engineering commitments at different stages of ML system life cycle. We also propose several initial starting points to mitigate these technical debts for deploying fair ML systems in production.
Abstract:Imitation learning has been applied to mimic the operation of a human cameraman in several autonomous cinematography systems. To imitate different filming styles, existing methods train multiple models, where each model handles a particular style and requires a significant number of training samples. As a result, existing methods can hardly generalize to unseen styles. In this paper, we propose a framework, which can imitate a filming style by "seeing" only a single demonstration video of the same style, i.e., one-shot imitation filming. This is done by two key enabling techniques: 1) feature extraction of the filming style from the demo video, and 2) filming style transfer from the demo video to the new situation. We implement the approach with deep neural network and deploy it to a 6 degrees of freedom (DOF) real drone cinematography system by first predicting the future camera motions, and then converting them to the drone's control commands via an odometer. Our experimental results on extensive datasets and showcases exhibit significant improvements in our approach over conventional baselines and our approach can successfully mimic the footage with an unseen style.
Abstract:We present Generative Adversarial rePresentations (GAP) as a data-driven framework for learning censored and/or fair representations. GAP leverages recent advancements in adversarial learning to allow a data holder to learn universal representations that decouple a set of sensitive attributes from the rest of the dataset. Under GAP, finding the optimal mechanism? {decorrelating encoder/decorrelator} is formulated as a constrained minimax game between a data encoder and an adversary. We show that for appropriately chosen adversarial loss functions, GAP provides {censoring} guarantees against strong information-theoretic adversaries and enforces demographic parity. We also evaluate the performance of GAP on multi-dimensional Gaussian mixture models and real datasets, and show how a designer can certify that representations learned under an adversary with a fixed architecture perform well against more complex adversaries.
Abstract:We present a data-driven framework called generative adversarial privacy (GAP). Inspired by recent advancements in generative adversarial networks (GANs), GAP allows the data holder to learn the privatization mechanism directly from the data. Under GAP, finding the optimal privacy mechanism is formulated as a constrained minimax game between a privatizer and an adversary. We show that for appropriately chosen adversarial loss functions, GAP provides privacy guarantees against strong information-theoretic adversaries. We also evaluate the performance of GAP on multi-dimensional Gaussian mixture models and the GENKI face database.
Abstract:Aerial surveillance and monitoring demand both real-time and robust motion detection from a moving camera. Most existing techniques for drones involve sending a video data streams back to a ground station with a high-end desktop computer or server. These methods share one major drawback: data transmission is subjected to considerable delay and possible corruption. Onboard computation can not only overcome the data corruption problem but also increase the range of motion. Unfortunately, due to limited weight-bearing capacity, equipping drones with computing hardware of high processing capability is not feasible. Therefore, developing a motion detection system with real-time performance and high accuracy for drones with limited computing power is highly desirable. In this paper, we propose a visual-inertial drone system for real-time motion detection, namely REDBEE, that helps overcome challenges in shooting scenes with strong parallax and dynamic background. REDBEE, which can run on the state-of-the-art commercial low-power application processor (e.g. Snapdragon Flight board used for our prototype drone), achieves real-time performance with high detection accuracy. The REDBEE system overcomes obstacles in shooting scenes with strong parallax through an inertial-aided dual-plane homography estimation; it solves the issues in shooting scenes with dynamic background by distinguishing the moving targets through a probabilistic model based on spatial, temporal, and entropy consistency. The experiments are presented which demonstrate that our system obtains greater accuracy when detecting moving targets in outdoor environments than the state-of-the-art real-time onboard detection systems.
Abstract:Preserving the utility of published datasets while simultaneously providing provable privacy guarantees is a well-known challenge. On the one hand, context-free privacy solutions, such as differential privacy, provide strong privacy guarantees, but often lead to a significant reduction in utility. On the other hand, context-aware privacy solutions, such as information theoretic privacy, achieve an improved privacy-utility tradeoff, but assume that the data holder has access to dataset statistics. We circumvent these limitations by introducing a novel context-aware privacy framework called generative adversarial privacy (GAP). GAP leverages recent advancements in generative adversarial networks (GANs) to allow the data holder to learn privatization schemes from the dataset itself. Under GAP, learning the privacy mechanism is formulated as a constrained minimax game between two players: a privatizer that sanitizes the dataset in a way that limits the risk of inference attacks on the individuals' private variables, and an adversary that tries to infer the private variables from the sanitized dataset. To evaluate GAP's performance, we investigate two simple (yet canonical) statistical dataset models: (a) the binary data model, and (b) the binary Gaussian mixture model. For both models, we derive game-theoretically optimal minimax privacy mechanisms, and show that the privacy mechanisms learned from data (in a generative adversarial fashion) match the theoretically optimal ones. This demonstrates that our framework can be easily applied in practice, even in the absence of dataset statistics.
Abstract:Although the recent progress in the deep neural network has led to the development of learnable local feature descriptors, there is no explicit answer for estimation of the necessary size of a neural network. Specifically, the local feature is represented in a low dimensional space, so the neural network should have more compact structure. The small networks required for local feature descriptor learning may be sensitive to initial conditions and learning parameters and more likely to become trapped in local minima. In order to address the above problem, we introduce an adaptive pruning Siamese Architecture based on neuron activation to learn local feature descriptors, making the network more computationally efficient with an improved recognition rate over more complex networks. Our experiments demonstrate that our learned local feature descriptors outperform the state-of-art methods in patch matching.