Abstract:Affine frequency division multiplexing (AFDM) is a promising chirp-assisted multicarrier waveform for future high-mobility communications. This paper is devoted to enhanced receiver design for multiple input and multiple output AFDM (MIMO-AFDM) systems. Firstly, we introduce a unified variational inference (VI) approach to approximate the target posterior distribution, under which the belief propagation (BP) and expectation propagation (EP)-based algorithms are derived. As both VI-based detection and low-density parity-check (LDPC) decoding can be expressed by bipartite graphs in MIMO-AFDM systems, we construct a joint sparse graph (JSG) by merging the graphs of these two for low-complexity receiver design. Then, based on this graph model, we present the detailed message propagation of the proposed JSG. Additionally, we propose an enhanced JSG (E-JSG) receiver based on the linear constellation encoding model. The proposed E-JSG eliminates the need for interleavers, de-interleavers, and log-likelihood ratio transformations, thus leading to concurrent detection and decoding over the integrated sparse graph. To further reduce detection complexity, we introduce a sparse channel method by approaximating multiple graph edges with insignificant channel coefficients into a single edge on the VI graph. Simulation results show the superiority of the proposed receivers in terms of computational complexity, detection and decoding latency, and error rate performance compared to the conventional ones.
Abstract:Sparse code multiple access (SCMA) and multiple input multiple output (MIMO) are considered as two efficient techniques to provide both massive connectivity and high spectrum efficiency for future machine-type wireless networks. This paper proposes a single sparse graph (SSG) enhanced expectation propagation algorithm (EPA) receiver, referred to as SSG-EPA, for uplink MIMO-SCMA systems. Firstly, we reformulate the sparse codebook mapping process using a linear encoding model, which transforms the variable nodes (VNs) of SCMA from symbol-level to bit-level VNs. Such transformation facilitates the integration of the VNs of SCMA and low-density parity-check (LDPC), thereby emerging the SCMA and LDPC graphs into a SSG. Subsequently, to further reduce the detection complexity, the message propagation between SCMA VNs and function nodes (FNs) are designed based on EPA principles. Different from the existing iterative detection and decoding (IDD) structure, the proposed EPA-SSG allows a simultaneously detection and decoding at each iteration, and eliminates the use of interleavers, de-interleavers, symbol-to-bit, and bit-to-symbol LLR transformations. Simulation results show that the proposed SSG-EPA achieves better error rate performance compared to the state-of-the-art schemes.
Abstract:This paper investigates joint location and velocity estimation, along with their fundamental performance bounds analysis, in a cell-free multi-input multi-output (MIMO) integrated sensing and communication (ISAC) system. First, unlike existing studies that derive likelihood functions for target parameter estimation using continuous received signals, we formulate the maximum likelihood estimation (MLE) for radar sensing based on discrete received signals at a given sampling rate. Second, leveraging the proposed MLEs, we derive closed-form Cramer-Rao lower bounds (CRLBs) for joint location and velocity estimation in both single-target and multiple-target scenarios. Third, to enhance computational efficiency, we propose approximate CRLBs and conduct an in-depth accuracy analysis. Additionally, we thoroughly examine the impact of sampling rate, squared effective bandwidth, and time width on CRLB performance. For multiple-target scenarios, the concepts of safety distance and safety velocity are introduced to characterize conditions under which the CRLBs for multiple targets converge to their single target counterparts. Finally, extensive simulations are conducted to verify the accuracy of the proposed CRLBs and the theoretical results using state-of-the-art waveforms, namely orthogonal frequency division multiplexing (OFDM) and orthogonal chirp division multiplexing (OCDM).
Abstract:In this paper, we investigate a cell-free massive multiple-input and multiple-output (MIMO)-enabled integration communication, computation, and sensing (ICCS) system, aiming to minimize the maximum computation latency to guarantee the stringent sensing requirements. We consider a two-tier offloading framework, where each multi-antenna terminal can optionally offload its local tasks to either multiple mobile-edge servers for distributed computation or the cloud server for centralized computation while satisfying the sensing requirements and power constraint. The above offloading problem is formulated as a mixed-integer programming and non-convex problem, which can be decomposed into three sub-problems, namely, distributed offloading decision, beamforming design, and execution scheduling mechanism. First, the continuous relaxation and penalty-based techniques are applied to tackle the distributed offloading strategy. Then, the weighted minimum mean square error (WMMSE) and successive convex approximation (SCA)-based lower bound are utilized to design the integrated communication and sensing (ISAC) beamforming. Finally, the other resources can be judiciously scheduled to minimize the maximum latency. A rigorous convergence analysis and numerical results substantiate the effectiveness of our method. Furthermore, simulation results demonstrate that multi-point cooperation in cell-free massive MIMO-enabled ICCS significantly reduces overall computation latency, in comparison to the benchmark schemes.
Abstract:This letter studies the low-complexity channel estimation for orthogonal time frequency space (OTFS) in the presence of hardware impairments. Firstly, to tackle the computational complexity of channel estimation, the basis expansion model (BEM) is utilized. Then, the mean square error (MSE) of the estimated channel is theoretically derived, revealing the effects of hardware impairments on channel estimation. Based on the estimated channel, the minimum mean square error (MMSE) detector is adopted to analyze the impacts of imperfect hardware on the bit error rate (BER). Finally, the numerical results validate the correctness of our theoretical analysis of the MSE for channel estimation and lower bound of the BER, and also demonstrate that even minor hardware impairments can significantly degrade the performance of the OTFS system.
Abstract:The design of efficient sparse codebooks in sparse code multiple access (SCMA) system have attracted tremendous research attention in the past few years. This paper proposes a novel nonlinear SCMA (NL-SCMA) that can subsume the conventional SCMA system which is referred to as linear SCMA, as special cases for downlink channels. This innovative approach allows a direct mapping of users' messages to a superimposed codeword for transmission, eliminating the need of a codebook for each user. This mapping is referred to as nonlinear mapping (codebook) in this paper. Hence, the primary objective is to design the nonlinear mapping, rather than the linear codebook for each user. We leverage the Lattice constellation to design the superimposed constellation due to its advantages such as the minimum Euclidean distance (MED), constellation volume, design flexibility and shape gain. Then, by analyzing the error patterns of the Lattice-designed superimposed codewords with the aid of the pair-wise error probability, it is found that the MED of the proposed nonlinear codebook is lower bounded by the ``single error pattern''. To this end, an error pattern-inspired codebook design is proposed, which can achieve large MEDs of the nonlinear codebooks. Numerical results show that the proposed codebooks can achieve lower error rate performance over both Gaussian and Rayleigh fading channels than the-state-of-the-art linear codebooks.
Abstract:Traditional self-interference cancellation (SIC) methods are common in full-duplex (FD) integrated sensing and communication (ISAC) systems. However, exploring new SIC schemes is important due to the limitations of traditional approaches. With the challenging limitations of traditional SIC approaches, this paper proposes a novel simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-enabled FD ISAC system, where STAR-RIS enhances simultaneous communication and target sensing and reduces self-interference (SI) to a level comparable to traditional SIC approaches. The optimization of maximizing the sensing signal-to-interference-plus-noise ratio (SINR) and the communication sum rate, both crucial for improving sensing accuracy and overall communication performance, presents significant challenges due to the non-convex nature of these problems. Therefore, we develop alternating optimization algorithms to iteratively tackle these problems. Specifically, we devise the semi-definite relaxation (SDR)-based algorithm for transmit beamformer design. For the reflecting and refracting coefficients design, we adopt the successive convex approximation (SCA) method and implement the SDR-based algorithm to tackle the quartic and quadratic constraints. Simulation results validate the effectiveness of the proposed algorithms and show that the proposed deployment can achieve better performance than that of the benchmark using the traditional SIC approach without STAR-RIS deployment.
Abstract:This paper studies the affine frequency division multiplexing (AFDM)-empowered sparse code multiple access (SCMA) system, referred to as AFDM-SCMA, for supporting massive connectivity in high-mobility environments. First, by placing the sparse codewords on the AFDM chirp subcarriers, the input-output (I/O) relation of AFDM-SCMA systems is presented. Next, we delve into the generalized receiver design, chirp rate selection, and error rate performance of the proposed AFDM-SCMA. The proposed AFDM-SCMA is shown to provide a general framework and subsume the existing OFDM-SCMA as a special case. Third, for efficient transceiver design, we further propose a class of sparse codebooks for simplifying the I/O relation, referred to as I/O relation-inspired codebook design in this paper. Building upon these codebooks, we propose a novel iterative detection and decoding scheme with linear minimum mean square error (LMMSE) estimator for both downlink and uplink channels based on orthogonal approximate message passing principles. Our numerical results demonstrate the superiority of the proposed AFDM-SCMA systems over OFDM-SCMA systems in terms of the error rate performance. We show that the proposed receiver can significantly enhance the error rate performance while reducing the detection complexity.
Abstract:In this letter, we incorporate index modulation (IM) into affine frequency division multiplexing (AFDM), called AFDM-IM, to enhance the bit error rate (BER) and energy efficiency (EE) performance. In this scheme, the information bits are conveyed not only by $M$-ary constellation symbols, but also by the activation of the chirp subcarriers (SCs) indices, which are determined based on the incoming bit streams. Then, two power allocation strategies, namely power reallocation (PR) strategy and power saving (PS) strategy, are proposed to enhance BER and EE performance, respectively. Furthermore, the average bit error probability (ABEP) is theoretically analyzed. Simulation results demonstrate that the proposed AFDM-IM scheme achieves better BER performance than the conventional AFDM scheme.
Abstract:Sparse code multiple access (SCMA) building upon orthogonal frequency division multiplexing (OFDM) is a promising wireless technology for supporting massive connectivity in future machine-type communication networks. However, the sensitivity of OFDM to carrier frequency offset (CFO) poses a major challenge because it leads to orthogonality loss and incurs intercarrier interference (ICI). In this paper, we investigate the bit error rate (BER) performance of SCMA-OFDM systems in the presence of CFO over both Gaussian and multipath Rayleigh fading channels. We first model the ICI in SCMA-OFDM as Gaussian variables conditioned on a single channel realization for fading channels. The BER is then evaluated by averaging over all codeword pairs considering the fading statistics. Through simulations, we validate the accuracy of our BER analysis and reveal that there is a significant BER degradation for SCMA-OFDM systems when the normalized CFO exceeds 0.02.