Abstract:Sparse code multiple access (SCMA) and multiple input multiple output (MIMO) are considered as two efficient techniques to provide both massive connectivity and high spectrum efficiency for future machine-type wireless networks. This paper proposes a single sparse graph (SSG) enhanced expectation propagation algorithm (EPA) receiver, referred to as SSG-EPA, for uplink MIMO-SCMA systems. Firstly, we reformulate the sparse codebook mapping process using a linear encoding model, which transforms the variable nodes (VNs) of SCMA from symbol-level to bit-level VNs. Such transformation facilitates the integration of the VNs of SCMA and low-density parity-check (LDPC), thereby emerging the SCMA and LDPC graphs into a SSG. Subsequently, to further reduce the detection complexity, the message propagation between SCMA VNs and function nodes (FNs) are designed based on EPA principles. Different from the existing iterative detection and decoding (IDD) structure, the proposed EPA-SSG allows a simultaneously detection and decoding at each iteration, and eliminates the use of interleavers, de-interleavers, symbol-to-bit, and bit-to-symbol LLR transformations. Simulation results show that the proposed SSG-EPA achieves better error rate performance compared to the state-of-the-art schemes.
Abstract:This paper presents a novel framework for importance-aware adaptive data transmission, designed specifically for real-time computer vision (CV) applications where task-specific fidelity is critical. An importance-weighted mean square error (IMSE) metric is introduced, assigning data importance based on bit positions within pixels and semantic relevance within visual segments, thus providing a task-oriented measure of reconstruction quality.To minimize IMSE under the total power constraint, a data-importance-aware waterfilling approach is proposed to optimally allocate transmission power according to data importance and channel conditions. Simulation results demonstrate that the proposed approach significantly outperforms margin-adaptive waterfilling and equal power allocation strategies, achieving more than $7$ dB and $10$ dB gains in normalized IMSE at high SNRs ($> 10$ dB), respectively. These results highlight the potential of the proposed framework to enhance data efficiency and robustness in real-time CV applications, especially in bandwidth-limited and resource-constrained environments.
Abstract:This paper explores the concept of information importance in multi-modal task-oriented semantic communication systems, emphasizing the need for high accuracy and efficiency to fulfill task-specific objectives. At the transmitter, generative AI (GenAI) is employed to partition visual data objects into semantic segments, each representing distinct, task-relevant information. These segments are subsequently encoded into tokens, enabling precise and adaptive transmission control. Building on this frame work, we present importance-aware source and channel coding strategies that dynamically adjust to varying levels of significance at the segment, token, and bit levels. The proposed strategies prioritize high fidelity for essential information while permitting controlled distortion for less critical elements, optimizing overall resource utilization. Furthermore, we address the source-channel coding challenge in semantic multiuser systems, particularly in multicast scenarios, where segment importance varies among receivers. To tackle these challenges, we propose solutions such as rate-splitting coded progressive transmission, ensuring flexibility and robustness in task-specific semantic communication.
Abstract:In this paper, we introduce token communications (TokCom), a unified framework to leverage cross-modal context information in generative semantic communications (GenSC). TokCom is a new paradigm, motivated by the recent success of generative foundation models and multimodal large language models (GFM/MLLMs), where the communication units are tokens, enabling efficient transformer-based token processing at the transmitter and receiver. In this paper, we introduce the potential opportunities and challenges of leveraging context in GenSC, explore how to integrate GFM/MLLMs-based token processing into semantic communication systems to leverage cross-modal context effectively, present the key principles for efficient TokCom at various layers in future wireless networks. We demonstrate the corresponding TokCom benefits in a GenSC setup for image, leveraging cross-modal context information, which increases the bandwidth efficiency by 70.8% with negligible loss of semantic/perceptual quality. Finally, the potential research directions are identified to facilitate adoption of TokCom in future wireless networks.
Abstract:This paper investigates uplink transmission from a single-antenna mobile phone to a cluster of satellites, emphasizing the role of inter-satellite links (ISLs) in facilitating cooperative signal detection. The study focuses on non-ideal ISLs, examining both terahertz (THz) and free-space optical (FSO) ISLs concerning their ergodic capacity. We present a practical scenario derived from the recent 3GPP standard, specifying the frequency band, bandwidth, user and satellite antenna gains, power levels, and channel characteristics in alignment with the latest 3GPP for non-terrestrial networks (NTN). Additionally, we propose a satellite selection method to identify the optimal satellite as the master node (MN), responsible for signal processing. This method takes into account both the user-satellite link and ISL channels. For the THz ISL analysis, we derive a closed-form approximation for ergodic capacity under two scenarios: one with instantaneous channel state information (CSI) and another with only statistical CSI shared between satellites. For the FSO ISL analysis, we present a closed-form approximate upper bound for ergodic capacity, accounting for the impact of pointing error loss. Furthermore, we evaluate the effects of different ISL frequencies and pointing errors on spectral efficiency. Simulation results demonstrate that multi-satellite multiple-input multiple-output (MIMO) satellite communication (SatCom) significantly outperforms single-satellite SatCom in terms of spectral efficiency. Additionally, our approximated upper bound for ergodic capacity closely aligns with results obtained from Monte Carlo simulations.
Abstract:This paper introduces a secure communication architecture for Unmanned Aerial Vehicles (UAVs) and ground stations in 5G networks, addressing critical challenges in network security. The proposed solution integrates the Advanced Encryption Standard (AES) with Elliptic Curve Cryptography (ECC) and CRYSTALS-Kyber for key encapsulation, offering a hybrid cryptographic approach. By incorporating CRYSTALS-Kyber, the framework mitigates vulnerabilities in ECC against quantum attacks, positioning it as a quantum-resistant alternative. The architecture is based on a server-client model, with UAVs functioning as clients and the ground station acting as the server. The system was rigorously evaluated in both VPN and 5G environments. Experimental results confirm that CRYSTALS-Kyber delivers strong protection against quantum threats with minimal performance overhead, making it highly suitable for UAVs with resource constraints. Moreover, the proposed architecture integrates an Artificial Intelligence (AI)-based Intrusion Detection System (IDS) to further enhance security. In performance evaluations, the IDS demonstrated strong results across multiple models with XGBoost, particularly in more demanding scenarios, outperforming other models with an accuracy of 97.33% and an AUC of 0.94. These findings underscore the potential of combining quantum-resistant encryption mechanisms with AI-driven IDS to create a robust, scalable, and secure communication framework for UAV networks, particularly within the high-performance requirements of 5G environments.
Abstract:Advances in wireless technology have significantly increased the number of wireless connections, leading to higher energy consumption in networks. Among these, base stations (BSs) in radio access networks (RANs) account for over half of the total energy usage. To address this, we propose a multi-cell sleep strategy combined with adaptive cell zooming, user association, and reconfigurable intelligent surface (RIS) to minimize BS energy consumption. This approach allows BSs to enter sleep during low traffic, while adaptive cell zooming and user association dynamically adjust coverage to balance traffic load and enhance data rates through RIS, minimizing the number of active BSs. However, it is important to note that the proposed method may achieve energy-savings at the cost of increased delay, requiring a trade-off between these two factors. Moreover, minimizing BS energy consumption under the delay constraint is a complicated non-convex problem. To address this issue, we model the RIS-aided multi-cell network as a Markov decision process (MDP) and use the proximal policy optimization (PPO) algorithm to optimize sleep mode (SM), cell zooming, and user association. Besides, we utilize a double cascade correlation network (DCCN) algorithm to optimize the RIS reflection coefficients. Simulation results demonstrate that PPO balances energy-savings and delay, while DCCN-optimized RIS enhances BS energy-savings. Compared to systems optimised by the benchmark DQN algorithm, energy consumption is reduced by 49.61%
Abstract:This paper proposes a graph neural network (GNN)-based space multiple-input multiple-output (MIMO) framework, named GSM, for direct-to-cell communications, aiming to achieve distributed coordinated beamforming for low Earth orbit (LEO) satellites. Firstly, a system model for LEO multi-satellite communications is established, where multiple LEO satellites collaborate to perform distributed beamforming and communicate with terrestrial user terminals coherently. Based on the system model, a weighted sum rate maximization problem is formulated. Secondly, a GNN-based method is developed to address the optimization problem. Particularly, the adopted neural network is composed of multiple identical GNNs, which are trained together and then deployed individually on each LEO satellite. Finally, the trained GNN is quantized and deployed on a field-programmable gate array (FPGA) to accelerate the inference by customizing the microarchitecture. Simulation results demonstrate that the proposed GNN scheme outperforms the benchmark ones including maximum ratio transmission, zero forcing and minimum mean square error. Furthermore, experimental results show that the FPGA-based accelerator achieves remarkably low inference latency, ranging from 3.863 to 5.883 ms under a 10-ns target clock period with 8-bit fixed-point data representation.
Abstract:The rollout of the fifth-generation (5G) networks has raised some concerns about potential health effects from increased exposure to electromagnetic fields (EMF). To address these concerns, we design a novel EMF-aware architecture for uplink communications. Specifically, we propose an aerial reconfigurable intelligent surface (ARIS) assisted multi-user multiple-input multiple-output (MIMO) system, where the ARIS features a reconfigurable intelligent surface (RIS) panel mounted on an unmanned aerial vehicle (UAV), offering a flexible and adaptive solution for reducing uplink EMF exposure. We formulate and solve a new problem to minimize the EMF exposure by optimizing the system parameters, such as transmit beamforming, resource allocation, transmit power, ARIS phase shifts, and ARIS trajectory. Our numerical results demonstrate the effectiveness of EMF-aware transmission scheme over the benchmark methods, achieving EMF reductions of over 30% and 90% compared to the fixed ARIS and non-ARIS schemes, respectively.
Abstract:The design of efficient sparse codebooks in sparse code multiple access (SCMA) system have attracted tremendous research attention in the past few years. This paper proposes a novel nonlinear SCMA (NL-SCMA) that can subsume the conventional SCMA system which is referred to as linear SCMA, as special cases for downlink channels. This innovative approach allows a direct mapping of users' messages to a superimposed codeword for transmission, eliminating the need of a codebook for each user. This mapping is referred to as nonlinear mapping (codebook) in this paper. Hence, the primary objective is to design the nonlinear mapping, rather than the linear codebook for each user. We leverage the Lattice constellation to design the superimposed constellation due to its advantages such as the minimum Euclidean distance (MED), constellation volume, design flexibility and shape gain. Then, by analyzing the error patterns of the Lattice-designed superimposed codewords with the aid of the pair-wise error probability, it is found that the MED of the proposed nonlinear codebook is lower bounded by the ``single error pattern''. To this end, an error pattern-inspired codebook design is proposed, which can achieve large MEDs of the nonlinear codebooks. Numerical results show that the proposed codebooks can achieve lower error rate performance over both Gaussian and Rayleigh fading channels than the-state-of-the-art linear codebooks.