Abstract:Multiple-input multiple-output (MIMO) systems using Rydberg atomic (RA) receivers face significant scalability challenges in signal detection due to their nonlinear signal models. This letter proposes phase-rotated symbol spreading (PRSS), which transmits each symbol across two consecutive time slots with an optimal π/2 phase offset. PRSS enables reconstruction of an effective linear signal model while maintaining spectral efficiency and facilitating the use of conventional RF-MIMO detection algorithms. Simulation results demonstrate that PRSS achieves greater than 2.5 dB and 10 dB bit error rate improvements compared to current single-transmission methods when employing optimal exhaustive search and low-complexity sub-optimal detection methods, respectively.
Abstract:Semantic Communication (SemCom), leveraging its significant advantages in transmission efficiency and reliability, has emerged as a core technology for constructing future intellicise (intelligent and concise) wireless networks. However, intelligent attacks represented by semantic eavesdropping pose severe challenges to the security of SemCom. To address this challenge, Semantic Steganographic Communication (SemSteCom) achieves ``invisible'' encryption by implicitly embedding private semantic information into cover modality carriers. The state-of-the-art study has further introduced generative diffusion models to directly generate stega images without relying on original cover images, effectively enhancing steganographic capacity. Nevertheless, the recovery process of private images is highly dependent on the guidance of private semantic keys, which may be inferred by intelligent eavesdroppers, thereby introducing new security threats. To address this issue, we propose an Agentic AI-driven SemSteCom (AgentSemSteCom) scheme, which includes semantic extraction, digital token controlled reference image generation, coverless steganography, semantic codec, and optional task-oriented enhancement modules. The proposed AgentSemSteCom scheme obviates the need for both cover images and private semantic keys, thereby boosting steganographic capacity while reinforcing transmission security. The simulation results on open-source datasets verify that, AgentSemSteCom achieves better transmission quality and higher security levels than the baseline scheme.
Abstract:The anticipated integration of large artificial intelligence (AI) models with wireless communications is estimated to usher a transformative wave in the forthcoming information age. As wireless networks grow in complexity, the traditional methodologies employed for optimization and management face increasingly challenges. Large AI models have extensive parameter spaces and enhanced learning capabilities and can offer innovative solutions to these challenges. They are also capable of learning, adapting and optimizing in real-time. We introduce the potential and challenges of integrating large AI models into wireless communications, highlighting existing AIdriven applications and inherent challenges for future large AI models. In this paper, we propose the architecture of large AI models for future wireless communications, introduce their advantages in data analysis, resource allocation and real-time adaptation, discuss the potential challenges and corresponding solutions of energy, architecture design, privacy, security, ethical and regulatory. In addition, we explore the potential future directions of large AI models in wireless communications, laying the groundwork for forthcoming research in this area.
Abstract:Insufficient link budget has become a bottleneck problem for direct access in current satellite communications. In this paper, we develop a semantic transmission framework for direct satellite communications as an effective and viable solution to tackle this problem. To measure the tradeoffs between communication, computation, and generation quality, we introduce a semantic efficiency metric with optimized weights. The optimization aims to maximize the average semantic efficiency metric by jointly optimizing transmission mode selection, satellite-user association, ISL task migration, denoising steps, and adaptive weights, which is a complex nonlinear integer programming problem. To maximize the average semantic efficiency metric, we propose a decision-assisted REINFORCE++ algorithm that utilizes feasibility-aware action space and a critic-free stabilized policy update. Numerical results show that the proposed algorithm achieves higher semantic efficiency than baselines.




Abstract:In recent years, unmanned aerial vehicles (UAVs) have become a key role in wireless communication networks due to their flexibility and dynamic adaptability. However, the openness of UAV-based communications leads to security and privacy concerns in wireless transmissions. This paper investigates a framework of UAV covert communications which introduces flexible reconfigurable intelligent surfaces (F-RIS) in UAV networks. Unlike traditional RIS, F-RIS provides advanced deployment flexibility by conforming to curved surfaces and dynamically reconfiguring its electromagnetic properties to enhance the covert communication performance. We establish an electromagnetic model for F-RIS and further develop a fitted model that describes the relationship between F-RIS reflection amplitude, reflection phase, and incident angle. To maximize the covert transmission rate among UAVs while meeting the covert constraint and public transmission constraint, we introduce a strategy of jointly optimizing UAV trajectories, F-RIS reflection vectors, F-RIS incident angles, and non-orthogonal multiple access (NOMA) power allocation. Considering this is a complicated non-convex optimization problem, we propose a deep reinforcement learning (DRL) algorithm-based optimization solution. Simulation results demonstrate that our proposed framework and optimization method significantly outperform traditional benchmarks, and highlight the advantages of F-RIS in enhancing covert communication performance within UAV networks.
Abstract:Accurate and efficient channel state information (CSI) feedback is crucial for unlocking the substantial spectral efficiency gains of extremely large-scale MIMO (XL-MIMO) systems in future 6G networks. However, the combination of near-field spherical wave propagation and frequency-dependent beam split effects in wideband scenarios poses significant challenges for CSI representation and compression. This paper proposes WideNLNet-CA, a rate-adaptive deep learning framework designed to enable efficient CSI feedback in wideband near-field XL-MIMO systems. WideNLNet-CA introduces a lightweight encoder-decoder architecture with multi-stage downsampling and upsampling, incorporating computationally efficient residual blocks to capture complex multi-scale channel features with reduced overhead. A novel compression ratio adaptive module with feature importance estimation is introduced to dynamically modulate feature selection based on target compression ratios, enabling flexible adaptation across a wide range of feedback rates using a single model. Evaluation results demonstrate that WideNLNet-CA consistently outperforms existing compressive sensing and deep learning-based works across various compression ratios and bandwidths, while maintaining fast inference and low model storage requirements.
Abstract:Data-intensive and immersive applications, such as virtual reality, impose stringent quality of experience (QoE) requirements that challenge traditional quality of service (QoS)-driven communication systems. This paper presents LightCom, a lightweight encoding and generative AI (GenAI)-augmented decoding framework, designed for QoE-oriented communications under low signal-to-noise ratio (SNR) conditions. LightCom simplifies transmitter design by applying basic low-pass filtering for source coding and minimal channel coding, significantly reducing processing complexity and energy consumption. At the receiver, GenAI models reconstruct high-fidelity content from highly compressed and degraded signals by leveraging generative priors to infer semantic and structural information beyond traditional decoding capabilities. The key design principles are analyzed, along with the sufficiency and error-resilience of the source representation. We also develop importance-aware power allocation strategies to enhance QoE and extend perceived coverage. Simulation results demonstrate that LightCom achieves up to a $14$ dB improvement in robustness and a $9$ dB gain in perceived coverage, outperforming traditional QoS-driven systems relying on sophisticated source and channel coding. This paradigm shift moves communication systems towards human-centric QoE metrics rather than bit-level fidelity, paving the way for more efficient and resilient wireless networks.




Abstract:Deep learning-based implicit channel state information (CSI) feedback has been introduced to enhance spectral efficiency in massive MIMO systems. Existing methods often show performance degradation in ultra-low-rate scenarios and inadaptability across diverse environments. In this paper, we propose Dual-ImRUNet, an efficient uplink-assisted deep implicit CSI feedback framework incorporating two novel plug-in preprocessing modules to achieve ultra-low feedback rates while maintaining high environmental robustness. First, a novel bi-directional correlation enhancement module is proposed to strengthen the correlation between uplink and downlink CSI eigenvector matrices. This module projects highly correlated uplink and downlink channel matrices into their respective eigenspaces, effectively reducing redundancy for ultra-low-rate feedback. Second, an innovative input format alignment module is designed to maintain consistent data distributions at both encoder and decoder sides without extra transmission overhead, thereby enhancing robustness against environmental variations. Finally, we develop an efficient transformer-based implicit CSI feedback network to exploit angular-delay domain sparsity and bi-directional correlation for ultra-low-rate CSI compression. Simulation results demonstrate successful reduction of the feedback overhead by 85% compared with the state-of-the-art method and robustness against unseen environments.




Abstract:To address the limitations of traditional reconfigurable intelligent surfaces (RIS) in spatial control capability, this paper introduces the concept of the fluid antenna system (FAS) and proposes a fluid simultaneously transmitting and reflecting RIS (FSTAR-RIS) assisted non-orthogonal multiple access (NOMA) multi-user communication system. In this system, each FSTAR-RIS element is capable of flexible mobility and can dynamically adjust its position in response to environmental variations, thereby enabling simultaneous service to users in both the transmission and reflection zones. This significantly enhances the system's spatial degrees of freedom (DoF) and service adaptability. To maximize the system's weighted sum-rate, we formulate a non-convex optimization problem that jointly optimizes the base station beamforming, the transmission/reflection coefficients of the FSTAR-RIS, and the element positions. An alternating optimization (AO) algorithm is developed, incorporating successive convex approximation (SCA), semi-definite relaxation (SDR), and majorization-minimization (MM) techniques. In particular, to address the complex channel coupling introduced by the coexistence of direct and FSTAR-RIS paths, the MM framework is employed in the element position optimization subproblem, enabling an efficient iterative solution strategy. Simulation results validate that the proposed system achieves up to a 27% increase in total sum rate compared to traditional STAR-RIS systems and requires approximately 50% fewer RIS elements to attain the same performance, highlighting its effectiveness for cost-efficient large-scale deployment.
Abstract:In this paper, a cluster-aware two-stage multiple-input multiple-output (MIMO) detection method is proposed for direct-to-cell satellite communications. The method achieves computational efficiency by exploiting a distinctive property of satellite MIMO channels: users within the same geographical cluster exhibit highly correlated channel characteristics due to their physical proximity, which typically impedes convergence in conventional iterative MIMO detectors. The proposed method implements a two-stage strategy that first eliminates intra-cluster interference using computationally efficient small matrix inversions, then utilizes these pre-computed matrices to accelerate standard iterative MIMO detectors such as Gauss-Seidel (GS) and symmetric successive over-relaxation (SSOR) for effective inter-cluster interference cancellation. Computer simulations demonstrate that the proposed method achieves more than 12 times faster convergence under perfect channel state information. Even when accounting for channel estimation errors, the method maintains 9 times faster convergence, demonstrating its robustness and effectiveness for next-generation satellite MIMO communications.