Peking University
Abstract:While model-based reinforcement learning (MBRL) improves sample efficiency by learning world models from raw observations, existing methods struggle to generalize across structurally similar scenes and remain vulnerable to spurious variations such as textures or color shifts. From a cognitive science perspective, humans segment continuous sensory streams into discrete events and rely on these key events for decision-making. Motivated by this principle, we propose the Event-Aware World Model (EAWM), a general framework that learns event-aware representations to streamline policy learning without requiring handcrafted labels. EAWM employs an automated event generator to derive events from raw observations and introduces a Generic Event Segmentor (GES) to identify event boundaries, which mark the start and end time of event segments. Through event prediction, the representation space is shaped to capture meaningful spatio-temporal transitions. Beyond this, we present a unified formulation of seemingly distinct world model architectures and show the broad applicability of our methods. Experiments on Atari 100K, Craftax 1M, and DeepMind Control 500K, DMC-GB2 500K demonstrate that EAWM consistently boosts the performance of strong MBRL baselines by 10%-45%, setting new state-of-the-art results across benchmarks. Our code is released at https://github.com/MarquisDarwin/EAWM.
Abstract:Unified remote sensing multimodal models exhibit a pronounced spatial reversal curse: Although they can accurately recognize and describe object locations in images, they often fail to faithfully execute the same spatial relations during text-to-image generation, where such relations constitute core semantic information in remote sensing. Motivated by this observation, we propose Uni-RS, the first unified multimodal model tailored for remote sensing, to explicitly address the spatial asymmetry between understanding and generation. Specifically, we first introduce explicit Spatial-Layout Planning to transform textual instructions into spatial layout plans, decoupling geometric planning from visual synthesis. We then impose Spatial-Aware Query Supervision to bias learnable queries toward spatial relations explicitly specified in the instruction. Finally, we develop Image-Caption Spatial Layout Variation to expose the model to systematic geometry-consistent spatial transformations. Extensive experiments across multiple benchmarks show that our approach substantially improves spatial faithfulness in text-to-image generation, while maintaining strong performance on multimodal understanding tasks like image captioning, visual grounding, and VQA tasks.
Abstract:Object detection in sonar images is a key technology in underwater detection systems. Compared to natural images, sonar images contain fewer texture details and are more susceptible to noise, making it difficult for non-experts to distinguish subtle differences between classes. This leads to their inability to provide precise annotation data for sonar images. Therefore, designing effective object detection methods for sonar images with extremely limited labels is particularly important. To address this, we propose a teacher-student framework called RSOD, which aims to fully learn the characteristics of sonar images and develop a pseudo-label strategy suitable for these images to mitigate the impact of limited labels. First, RSOD calculates a reliability score by assessing the consistency of the teacher's predictions across different views. To leverage this score, we introduce an object mixed pseudo-label method to tackle the shortage of labeled data in sonar images. Finally, we optimize the performance of the student by implementing a reliability-guided adaptive constraint. By taking full advantage of unlabeled data, the student can perform well even in situations with extremely limited labels. Notably, on the UATD dataset, our method, using only 5% of labeled data, achieves results that can compete against those of our baseline algorithm trained on 100% labeled data. We also collected a new dataset to provide more valuable data for research in the field of sonar.
Abstract:Reliable zero-shot detection of out-of-distribution (OOD) inputs is critical for deploying vision-language models in open-world settings. However, the lack of labeled negatives in zero-shot OOD detection necessitates proxy signals that remain effective under distribution shift. Existing negative-label methods rely on a fixed set of textual proxies, which (i) sparsely sample the semantic space beyond in-distribution (ID) classes and (ii) remain static while only visual features drift, leading to cross-modal misalignment and unstable predictions. In this paper, we propose CoEvo, a training- and annotation-free test-time framework that performs bidirectional, sample-conditioned adaptation of both textual and visual proxies. Specifically, CoEvo introduces a proxy-aligned co-evolution mechanism to maintain two evolving proxy caches, which dynamically mines contextual textual negatives guided by test images and iteratively refines visual proxies, progressively realigning cross-modal similarities and enlarging local OOD margins. Finally, we dynamically re-weight the contributions of dual-modal proxies to obtain a calibrated OOD score that is robust to distribution shift. Extensive experiments on standard benchmarks demonstrate that CoEvo achieves state-of-the-art performance, improving AUROC by 1.33% and reducing FPR95 by 45.98% on ImageNet-1K compared to strong negative-label baselines.
Abstract:Multimodal emotion understanding requires effective integration of text, audio, and visual modalities for both discrete emotion recognition and continuous sentiment analysis. We present EGMF, a unified framework combining expert-guided multimodal fusion with large language models. Our approach features three specialized expert networks--a fine-grained local expert for subtle emotional nuances, a semantic correlation expert for cross-modal relationships, and a global context expert for long-range dependencies--adaptively integrated through hierarchical dynamic gating for context-aware feature selection. Enhanced multimodal representations are integrated with LLMs via pseudo token injection and prompt-based conditioning, enabling a single generative framework to handle both classification and regression through natural language generation. We employ LoRA fine-tuning for computational efficiency. Experiments on bilingual benchmarks (MELD, CHERMA, MOSEI, SIMS-V2) demonstrate consistent improvements over state-of-the-art methods, with superior cross-lingual robustness revealing universal patterns in multimodal emotional expressions across English and Chinese. We will release the source code publicly.
Abstract:Recent advancements adopt online reinforcement learning (RL) from LLMs to text-to-image rectified flow diffusion models for reward alignment. The use of group-level rewards successfully aligns the model with the targeted reward. However, it faces challenges including low efficiency, dependency on stochastic samplers, and reward hacking. The problem is that rectified flow models are fundamentally different from LLMs: 1) For efficiency, online image sampling takes much more time and dominates the time of training. 2) For stochasticity, rectified flow is deterministic once the initial noise is fixed. Aiming at these problems and inspired by the effects of group-level rewards from LLMs, we design Group-level Direct Reward Optimization (GDRO). GDRO is a new post-training paradigm for group-level reward alignment that combines the characteristics of rectified flow models. Through rigorous theoretical analysis, we point out that GDRO supports full offline training that saves the large time cost for image rollout sampling. Also, it is diffusion-sampler-independent, which eliminates the need for the ODE-to-SDE approximation to obtain stochasticity. We also empirically study the reward hacking trap that may mislead the evaluation, and involve this factor in the evaluation using a corrected score that not only considers the original evaluation reward but also the trend of reward hacking. Extensive experiments demonstrate that GDRO effectively and efficiently improves the reward score of the diffusion model through group-wise offline optimization across the OCR and GenEval tasks, while demonstrating strong stability and robustness in mitigating reward hacking.
Abstract:Text-guided Medical Image Segmentation has shown considerable promise for medical image segmentation, with rich clinical text serving as an effective supplement for scarce data. However, current methods have two key bottlenecks. On one hand, they struggle to process diagnostic and descriptive texts simultaneously, making it difficult to identify lesions and establish associations with image regions. On the other hand, existing approaches focus on lesions description and fail to capture positional constraints, leading to critical deviations. Specifically, with the text "in the left lower lung", the segmentation results may incorrectly cover both sides of the lung. To address the limitations, we propose the Spatial-aware Symmetric Alignment (SSA) framework to enhance the capacity of referring hybrid medical texts consisting of locational, descriptive, and diagnostic information. Specifically, we propose symmetric optimal transport alignment mechanism to strengthen the associations between image regions and multiple relevant expressions, which establishes bi-directional fine-grained multimodal correspondences. In addition, we devise a composite directional guidance strategy that explicitly introduces spatial constraints in the text by constructing region-level guidance masks. Extensive experiments on public benchmarks demonstrate that SSA achieves state-of-the-art (SOTA) performance, particularly in accurately segmenting lesions characterized by spatial relational constraints.
Abstract:Vision-Language Navigation (VLN) enables agents to navigate in complex environments by following natural language instructions grounded in visual observations. Although most existing work has focused on ground-based robots or outdoor Unmanned Aerial Vehicles (UAVs), indoor UAV-based VLN remains underexplored, despite its relevance to real-world applications such as inspection, delivery, and search-and-rescue in confined spaces. To bridge this gap, we introduce \textbf{IndoorUAV}, a novel benchmark and method specifically tailored for VLN with indoor UAVs. We begin by curating over 1,000 diverse and structurally rich 3D indoor scenes from the Habitat simulator. Within these environments, we simulate realistic UAV flight dynamics to collect diverse 3D navigation trajectories manually, further enriched through data augmentation techniques. Furthermore, we design an automated annotation pipeline to generate natural language instructions of varying granularity for each trajectory. This process yields over 16,000 high-quality trajectories, comprising the \textbf{IndoorUAV-VLN} subset, which focuses on long-horizon VLN. To support short-horizon planning, we segment long trajectories into sub-trajectories by selecting semantically salient keyframes and regenerating concise instructions, forming the \textbf{IndoorUAV-VLA} subset. Finally, we introduce \textbf{IndoorUAV-Agent}, a novel navigation model designed for our benchmark, leveraging task decomposition and multimodal reasoning. We hope IndoorUAV serves as a valuable resource to advance research on vision-language embodied AI in the indoor aerial navigation domain.
Abstract:This work presents a 28nm 13.93mm2 CNN-Transformer accelerator for semantic segmentation, achieving 3.86-to-10.91x energy reduction over previous designs. It features a hybrid attention unit, layer-fusion scheduler, and cascaded feature-map pruner, with peak energy efficiency of 52.90TOPS/W (INT8).




Abstract:Benchmarks like SWE-bench have standardized the evaluation of Large Language Models (LLMs) on repository-level software engineering tasks. However, these efforts remain limited by manual curation, static datasets, and a focus on Python-based bug fixes. We introduce SWE-Bench++, an automated framework that generates repository-level coding tasks from open-source GitHub projects. Unlike synthetic approaches, our pipeline harvests live pull requests to cover both bug fixes and feature requests across 11 languages. SWE-Bench++ turns GitHub pull requests (PRs) into reproducible, execution-based tasks via four stages: programmatic sourcing, environment synthesis, test oracle extraction, and quality assurance. A final hint-guided trajectory synthesis step converts instances that strong models fail on into training trajectories. Our initial benchmark consists of 11,133 instances from 3,971 repositories across 11 languages. On a subset of 1,782 instances of this benchmark, today's strongest models perform as follows: claude-sonnet-4.5 achieves 36.20% pass@10, gpt-5-2025-08-07 34.57%, gemini/gemini-2.5-pro 24.92%, and gpt-4o 16.89%. We further demonstrate the utility of our dataset by showing that fine-tuning on SWE-Bench++ instances yields measurable improvements on the SWE-bench Multilingual benchmark. SWE-Bench++ provides a scalable, multilingual benchmark for evaluating and improving repository-level code generation.